Mostrar el registro sencillo del ítem

LicenciaThis is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.es
AutorDuarte, Efraín
AutorZagal, Erick
AutorBarrera, Juan A.
AutorDube, Francis
AutorCasco, Fabio
AutorHernández, Alexander J.
Fecha de admisión2024-11-13T00:45:41Z
Fecha disponible2024-11-13T00:45:41Z
Año2022
CitaciónDuarte, E., Zagal, E., Barrera, J. A., Dube, F., Casco, F., & Hernández, A. J. (2022). Digital mapping of soil organic carbon stocks in the forest lands of Dominican Republic. European journal of remote sensing, 55(1), 213-231. Recuperado de:es
URIhttps://bvearmb.do/handle/123456789/5401
SinopsisMapping the spatial distribution of soil organic carbon (SOC) in lands covered by tropical forests is important to understand the relationship and dynamics of SOC in this type of ecosystem. In this study, the Random Forest (RF) algorithm was used to map SOC stocks of topsoil (0–15 cm) in forest lands of the Dominican Republic. The methodology was developed using geospatial datasets available in the Google Earth Engine (GEE) platform combined with a set of 268 soil samples. Twenty environmental covariates were analyzed, including climate, topography, and vegetation. The results indicate that Model A (combining all 20 covariates) was only marginally better than Model B (combining topographic and climatic covariates) and Model C (only combining multispectral remote sensing data derived from Landsat 8 OLI images). Model A and Model B yielded SOC mean values of 110.35 and 110.87 Mg C ha−1, respectively. Model A reported the lowest prediction error and uncertainty with an R² of 0.83 and an RMSE of 35.02 Mg C ha−1. There was a strong dependence of SOC stocks on multispectral remote sensing data. Therefore, multispectral remote sensing proved accurate to map SOC stocks in forest ecosystems in the region.es
IdiomaEnglishes
PublicadoEuropean journal of remote sensing, 55(1), 213-231es
Derechos© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.es
URI de derechoshttp://creativecommons.org/licenses/by/4.0/es
MateriaInvestigación ambientales
MateriaTecnologíaes
MateriaRecursos naturales - República Dominicanaes
MateriaRecursos forestaleses
MateriaEdafologíaes
MateriaCiencias del Sueloes
TítuloDigital mapping of soil organic carbon stocks in the forest lands of Dominican Republices
dc.identifier.doihttps://doi.org/10.1080/22797254.2022.2045226
Tipo de materialArticlees
Tipo de contenidoScientific researches
AccesoOpenes
AudienciaTechnicians, professionals and scientistses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(es)

Mostrar el registro sencillo del ítem

This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
La consulta y descarga de este documento están sujetas a esta licencia: This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.