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RESEARCH NOTE

A phylogeny of the genus Limia (Teleostei: 
Poeciliidae) suggests a single-lake radiation 
nested in a Caribbean-wide allopatric speciation 
scenario
Montrai Spikes1,2, Rodet Rodríguez‑Silva2, Kerri‑Ann Bennett3, Stefan Bräger4, James Josaphat5, 
Patricia Torres‑Pineda6, Anja Ernst1, Katja Havenstein1, Ingo Schlupp1,2 and Ralph Tiedemann1*  

Abstract 

Objective: The Caribbean is an important global biodiversity hotspot. Adaptive radiations there lead to many specia‑
tion events within a limited period and hence are particularly prominent biodiversity generators. A prime example 
are freshwater fish of the genus Limia, endemic to the Greater Antilles. Within Hispaniola, nine species have been 
described from a single isolated site, Lake Miragoâne, pointing towards extraordinary sympatric speciation. This study 
examines the evolutionary history of the Limia species in Lake Miragoâne, relative to their congeners throughout the 
Caribbean.

Results: For 12 Limia species, we obtained almost complete sequences of the mitochondrial cytochrome b gene, a 
well‑established marker for lower‑level taxonomic relationships. We included sequences of six further Limia species 
from GenBank (total N  = 18 species). Our phylogenies are in concordance with other published phylogenies of Limia. 
There is strong support that the species found in Lake Miragoâne in Haiti are monophyletic, confirming a recent local 
radiation. Within Lake Miragoâne, speciation is likely extremely recent, leading to incomplete lineage sorting in the 
mtDNA. Future studies using multiple unlinked genetic markers are needed to disentangle the relationships within 
the Lake Miragoâne clade.
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Introduction
The Caribbean is considered one of the most important 
global biodiversity hotspots [1]. The largest biodiversity is 
found in the Greater Antilles (Cuba, Hispaniola, Jamaica 
and Puerto Rico) where a remarkable diversification is 
observed in freshwater fishes [2–5], amphibians [6, 7], 
reptiles [8, 9], invertebrates [10–12] and plants [13, 14], 

putatively driven by a complex geological history, envi-
ronmental heterogeneity, and the tropical climate [15, 
16].

Adaptive radiations typically occur when a set of open 
niches becomes available because of a key innovation or 
the arrival of a founder species, which subsequently dif-
ferentiates to occupy these niches [17]. Many classical 
examples are linked to islands, as Darwin’s Finches on the 
Galapagos islands, all of which go back to a single ances-
tor [18–20]. Research on Darwin’s Finches also high-
lighted the role of hybridization in speciation [21]. Other 
well-explored radiations include Hawaiian silverswords 
[22–24] and Hawaiian honeycreepers [25]. In all these 
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examples, molecular evidence has played an impor-
tant role in understanding the evolutionary processes of 
speciation. Probably the best-known examples from the 
Caribbean region are Anolis lizards [26] and Eleuthero-
dactylus frogs [27].

Poeciliidae are freshwater livebearing fishes that have 
experienced an enormous radiation in aquatic environ-
ments of the West Indies with three endemic genera 
(Girardinus, Quintana and Limia) distributed in the 
Antilles [3, 4, 28, 29]. The Caribbean is also the site of 
two lesser known radiations in isolated inland lakes, both 
of which involve fishes of the genus Cyprinodon [30–33]. 
These Caribbean fishes share many characteristics with 
the most prominent example of radiation in freshwa-
ter fishes, the cichlids in lakes of the Rift Valley of East 
Africa, where each lake has produced a distinct cichlid 
fauna [34–36]. One of the important drivers for specia-
tion in these fishes seems to be feeding specializations 
[33, 37, 38]. Furthermore, as generally predicted from the 
theory of island biogeography [39] and recently empiri-
cally confirmed for island birds [40, 41], the number 
and diversity of species in both the Rift Valley lakes and 
Greater Antilles correlates with the size of the habitat.

Among livebearing fishes of the Greater Antilles, the 
origin of the different lineages and species composition 
within each genus may show peculiar patterns [39, 42]. 
Limia is part of the unique freshwater fish fauna of the 
Greater Antilles. It is found in most freshwater habitats 
in Hispaniola, ranging from hypersaline lagoons to rela-
tively cool mountain streams [43, 44]. Limia species are 
generally feeding generalists [2, 45, 46]. Their distribution 
indicates a radiation on Hispaniola [2, 47], with 19 of the 
23 known species found on this island [46, 48] (Addi-
tional file 1). By contrast, on Cuba, Jamaica, and Grand 
Cayman, only one species each is found [28, 44, 49]. 
Within Hispaniola, nine Limia species (L. fuscomaculata, 
L. garnieri, L. grossidens, L. immaculata, L. islai, L. man-
dibularis, L. miragoanensis, L. nigrofasciata, L. ornata) 
have been described from a single site, Lake Miragoâne. 
This lake is one of the largest freshwater lakes in the Car-
ibbean and is located in the southwestern part of Haiti. 
It comprises an isolated, endorheic drainage [50]. A 
Limia radiation there was hypothesized by Rivas [2] and 
has received renewed attention through the description 
of two new species from the lake [43, 45]. However, few 
studies have examined the evolutionary history of the 
fishes found in Lake Miragoâne.

Without specific attention to Lake Miragoâne, some 
studies of Limia have resolved the general phylogeny of 
the genus. Current literature suggests Limia to form a 
monophyletic group with the genera Pamphorichthys, 
Mollienesia, Micropoecilia, and Poecilia, with Limia as 
sister taxon to Poecilia [51–53]. Limia melanogaster is 

the most basal species, branching off early and coloniz-
ing Jamaica [2]. Limia melanogaster’s divergence was 
followed by the colonization of Hispaniola, where the 
species diverged into over 20 recognized species [44]. 
Nested within the species native to Hispaniola are L. vit-
tata and L. caymanensis [2, 54] which are the only spe-
cies native to their respective islands, Cuba and Grand 
Cayman [28, 44]. Most previous analyses target only a 
few species [52, 53, 55]. The most comprehensive phy-
logeny to date used nine species of Limia. Among them 
were only two native to Lake Miragoâne, Limia nigrofas-
ciata and Limia islai [2, 44, 46], such that Riva’s hypoth-
esis of a local radiation within Lake Miragoâne [1] could 
so far not been tested.

Our study comprises 18 out of 23 currently recog-
nized species of Limia. It is particularly novel regarding 
its more comprehensive sampling of Lake Miragoâne, 
including five of its native species. We expected that if a 
local radiation event did occur in Lake Miragoâne, those 
species native to the lake should form a monophyletic 
clade.

Main text
Materials and methods
Sampling
Ingroup sampling consisted of 67 individuals represent-
ing 18 species of Limia (Additional files 2, 3). Twelve 
Limia species were obtained from wild-caught popula-
tions. Sequences from six Limia species were obtained 
from GenBank: L. garnieri, L. melanonotata, L. paucira-
diata, L. rivasi, L. versicolor, and L. sulphurophila. 
Outgroup sampling consisted of eight individuals repre-
senting three species of Poecilia, the sister taxon to Limia 
[28, 44, 55]: P. dominicensis [45], P. hispaniolana [56], 
both endemic to Hispaniola, and P. mexicana from the 
Atlantic side of Mexico. We used four to five individuals 
per species, except in cases where sampling was limited.

Molecular methods
We targeted the mitochondrial (mt) cytochrome b gene, 
a well-established marker for lower-level taxonomic rela-
tionships as in recent radiations (see [57] for a fish exam-
ple) for which we obtained an almost complete sequence.

Genomic DNA was extracted from muscle tissue using 
a cetyl trimethylammonium bromide (CTAB) protocol 
[58]. DNA concentration was measured using a Nan-
oDrop ND-1000 and ranged from 2.7 to 120  ng/µl. Via 
Polymerase Chain Reaction (PCR), we amplified 1127 bp 
of the mitochondrial cytochrome b gene. Primers and 
reaction profiles were modified from Hrbek et  al. ([51]; 
Additional file  4). Except for L. vittata, P. dominicensis, 
and P. hispaniolana, the primer combinations L14725 
and H15981 were used. 1 µl DNA isolate was used during 
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amplification (increased to 2  µl if DNA concentration 
was below 20  ng/µl). PCR reactions contained 0.12  µl 
of 5 U/µl MyTaq mtDNA polymerase (Bioline), 0.5 µl of 
each 10 µM primer, 5 µl of 5 × MyTaq reaction buffer and 
HPLC  H2O up to a final volume of 50 μl. PCR products 
were sequenced using Applied Biosystems™ BigDye™ 
Terminator v3.1 Cycle Sequencing Kits (ThermoFisher), 
purified with ExoSAP (Exonuclease I [59] and Antarctic 
Phosphatase [60]) according to manuals from New Eng-
land Biolabs, and run on an Applied Biosystems™ 3500 
sequencer.

Phylogenetic and haplotype network analyses
Sequences were manually edited and aligned with 
ClustalW in BioEdit v.7.2 [61, 62] and 1127  bp of 
cytochrome b were used in phylogenetic analyses. Poten-
tial mutation saturation was assessed with DAMBE [63]. 
We conducted Maximum Likelihood analyses using 
RAxML GUI v.2.0 [64, 65] and assessing clade support 
via 10,000 rapid bootstrap pseudoreplicates. Separately, 
we conducted Bayesian analyses in MrBayes v.3.2.7. [66], 
where we ran four Markov chains for 10,00,000 iterations, 
sampling every 1000 iterations, with three heated chains 
and one cold chain and default parameters unlinked 
across partitions. Convergence was assessed using Tracer 
v.1.7. All parameter estimates were verified to have been 

sampled sufficiently (ESS  > 200). We removed the first 
25% of our trees as burn-in, such that 3002 trees were 
retained. Nodes were considered with bootstrap support 
(BS) and Bayesian posterior probability (PP) greater than 
70 and 0.95, respectively [67, 68]. A haplotype network 
was constructed within PopArt [69] using a median join-
ing network [70]. Genetic distances between taxonomic 
groups were calculated in MEGA [71].

Results
There was no indication of mutation saturation in our 
data set (Additional file  5). Maximum Likelihood and 
Bayesian trees revealed nearly identical topologies for 
interspecific relationships (Fig. 1). In both trees, there is 
strong support that the species found in Lake Miragoâne 
in Haiti are monophyletic (BS  = 97; PP  = 1.0). However, 
within Lake Miragoâne, L. mandibularis is the only spe-
cies resolved as a monophyletic group, while the pheno-
typically described species L. islai, L. immacualata, L. 
miragoanensis, and L. nigrofasciata form a polytomy.

For the majority of taxa outside Lake Miragoâne, both 
species monophylies and respective taxonomic relation-
ships were well supported. L. yaguajali is sister to a clade 
consisting of L. perugiae, L. dominicensis, and the spe-
cies in Lake Miragoâne, but this node has only moderate 
support (BS  = 61; PP  = 72). We found significant genetic 

Fig. 1 Phylogenetic tree of Limia based on the mitochondrial (mt) cytochrome b gene. Maximum likelihood bootstrap values are placed after 
Bayesian inference posterior probabilities at each node. Both phylogenetic analyses revealed identical topologies. Species endemic to Lake 
Miragoâne formed a separate clade, compatible with an in‑situ radiation. Phylogenetic relationships within the Lake Miragoâne clade were not 
resolved in our analyses
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divergence among two populations of L. melanogaster on 
Jamaica (BS  = 100; PP  = 1.0; Additional file 6). The hap-
lotype network (Fig. 2) confirms divergent Limia evolu-
tion among the different Caribbean islands. Within Lake 
Miragoâne and in the L. perugiae group, some mito-
chondrial haplotypes were shared among morphological 
species.

Discussion
The five Limia species from Lake Miragoâne are recov-
ered as a well-supported clade in all phylogenetic analy-
ses, indicating an in  situ radiation. However, taxonomic 
relationships within the clade were not resolved. These 

species have likely diverged too recently for complete 
lineage sorting and reciprocal monophyly to evolve at 
a single maternally inherited locus like cytochrome b. 
Alternatively, the observed pattern could be due to spe-
cies hybridization, introgression, or phenotypic species 
misassignment [72]. However, the distinct morphological 
differences of the species found in Lake Miragoâne make 
us reluctant to attribute the polytomy to phenotypic spe-
cies misassignment (Fig. 3).

Most other relationships supported in our phylo-
genetic analyses are consistent with the findings of 
previous phylogenetic studies [28, 44]. Limia mela-
nogaster’s basal placement (Fig. 1) corroborates initially 

Fig. 2 Mitochondrial haplotype network. Both the Lake Miragoâne group and L. perugiae group exhibit haplotypes shared among species, 
indicative of incomplete lineage sorting
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colonization of Jamaica before radiating across other 
islands in the Greater Antilles [41], lending addi-
tional support to the Greater Antilles and Aves Ridge 
(GAAR) landia hypothesis [44, 73]. The divergence 
within L. melanogaster may be the first evidence of a 
further cryptic speciation event in Limia (Additional 
file  5). Limia vittata from Cuba and L. caymanensis 
from Grand Cayman group within the Hispaniola clade. 
These two species are likely the sister taxa to L. yagua-
jali which is found in the north of Hispaniola. This 
coincides with geological evidence that eastern Cuba 
and north-central Hispaniola were likely connected as a 
single magmatic arc during the Paleocene-Eocene [74] 
until the Oligocene [75]. Together, the biogeographic 
and geological evidence suggests that a L. vittata ances-
tor reached Cuba from the north of Hispaniola and 
subsequently L. caymanensis ancestor reached Grand 
Cayman from Cuba. Alternatively, they may have 
reached Cuba via open ocean migration, which has 
been found in freshwater fishes [5].

The L. perugiae group also exhibits a shallow phylog-
eny with short branches and one haplotype shared across 
species, again indicating a recent divergence or incom-
plete lineage sorting. L. perugiae is found from hypersa-
line lagoons to cool freshwater streams and dominates 
another large lake on Hispaniola, Lake Enriquillo. Limia 
perugiae is also widely distributed throughout Hispaniola 
with many isolated populations. The combination of L. 
perugiae’s diverse life history strategies and fragmented 
populations may promote cryptic speciation. However, 
given our inability to genetically resolve this group, phe-
notypic plasticity could be an alternative explanation.

It is known that Limia species from Lake Miragoâne 
all inhabit extremely similar niches [76] and they likely 
possess similar life histories, perhaps with the excep-
tion of L. mandibularis. This species has well-developed 
and anteriorly projected lower jaw, deviating from other 
poeciliids and potentially reflecting specializations in diet 
[48]. Marked sexual dimorphism, with males such as in L. 
nigrofasciata being extremely ornamented, suggests that 

Fig. 3 Images of Limia found in Lake Miragoâne
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sexual selection is also present. Therefore, it is plausible 
that both natural and sexual selection might—indepen-
dently or in concert—act as drivers in the potential radia-
tion of Limia in Lake Miragoâne.

Limitations
We present initial evidence for a potential radiation in 
Lake Miragoâne, yet we recognize the limitations of a 
single-gene phylogeny. Our preliminary findings are 
supported by morphometric data that show distinct 
phenotypic differences between multiple Limia popula-
tions [1, 43, 45]. The use of multiple unlinked markers, 
such as microsatellites or SNPs, along with increased 
population sampling are imperative to understand the 
radiation event within this clade, as is true for the L. 
perugiae group as well. Such analyses may also resolve 
the relationship of L. yaguajali with L. vittata and L. 
caymanensis. We acknowledge that 18 species repre-
sent only a subset of the 23 known species of Limia, 
therefore future studies should continue to increase 
species sampling. Furthermore, our methodology can-
not rule out ongoing hybridization between species 
in Lake Miragoâne, however, the species we keep in 
the International Stock Center for Livebearing Fishes, 
appear to breed like regular species.
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