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ABSTRACT

Mapping the spatial distribution of soil organic carbon (SOC) in lands covered by tropical forests is 
important to understand the relationship and dynamics of SOC in this type of ecosystem. In this 
study, the Random Forest (RF) algorithm was used to map SOC stocks of topsoil (0–15 cm) in forest 
lands of the Dominican Republic. The methodology was developed using geospatial datasets 
available in the Google Earth Engine (GEE) platform combined with a set of 268 soil samples. 
Twenty environmental covariates were analyzed, including climate, topography, and vegetation. 
The results indicate that Model A (combining all 20 covariates) was only marginally better than 
Model B (combining topographic and climatic covariates), and Model C (only combining multi-
spectral remote sensing data derived from Landsat 8 OLI images). Model A and Model B yielded SOC 
mean values of 110.35 and 110.87 Mg C ha−1, respectively. Model A reported the lowest prediction 
error and uncertainty with an R2 of 0.83, an RMSE of 35.02 Mg C ha−1. There was a strong 
dependence of SOC stocks on multispectral remote sensing data. Therefore, multispectral remote 
sensing proved accurate to map SOC stocks in forest ecosystems in the region.
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Introduction

Soils hold the largest carbon (C) pool on Earth after 

the oceans, with an estimated total of 1,500–2,400 Pg 

C up to 1 m depth (Scharlemann et al., 2014; Tifafi 

et al., 2018). Soil organic carbon (SOC) directly influ-

ences the physicochemical properties nutrient reten-

tion capacity and infiltration rate of the soil (Scholten 

et al., 2017; Viscarra Rossel et al., 2016). In addition, 

SOC has the potential to mitigate the adverse impacts 

of current and future climate change (Edenhofer et al., 

2014) and help improve the primary productivity of 

the biosphere (Grinand et al., 2017).

The Global Climate Observing System (GCOS) has 

identified 54 Essential Climate Variables (ECVs),  
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including components of the cryosphere, biosphere, 

and hydrosphere that are “needed to understand and 

predict the evolution of climate, to guide mitigation and 

adaptation measures, to assess risks and enable attribu-

tion of climate events to underlying causes, and to 

underpin climate services” (WMO, 2020). The present 

work focuses on one of these ECVs, SOC stocks, parti-

cularly those stored in lands covered by tropical forests.

The global C stocks in forest biomass and their spatial 

distribution are relatively well documented and have 

been estimated with reasonable accuracy compared to 

SOC stocks (Baccini et al., 2012; Harris et al., 2012; 

Ruesch & Gibbs, 2008; Saatchi et al., 2011). Most local 

and international policies for climate change mitigation 

have focused on conserving and studying the C stored in 

forests. In addition to this, SOC is of great importance 

because the Earth’s soils store two-to-three times as much 

carbon in organic form as there is C in the atmosphere 

globally (Trumbore, 2009). In this sense, the construction 

of a robust and transparent system to measure, report and 

verify (MRV) SOC changes represents a key tool to sup-

port compliance with the Sustainable Development Goals 

(SDG), specifically the SDG indicator 15.3.1 “Proportion 

of land that is degraded over the total land area” (FAO, 

2020; Jan & Jeffrey, 2018).

At present, there is still uncertainty about the amount 

of global SOC stocks and their spatial distribution, mainly 

due to the little attention given by decision makers at the 

local, national and international levels (Gianelle et al., 

2010). In an analysis and review of 27 studies that esti-

mated SOC globally, it was found that the SOC mean 

value is approximately 1,460.5 Pg C, ranging from 504 to 

3,000 Pg C (Scharlemann et al., 2014). One of the main 

reasons for the uncertainties found in these estimates is 

the large number of factors that interfere in SOC 

dynamics combined with all the uncertainties leading to 

error propagation associated with the difficulty in asses-

sing C and soil bulk density (Köchy et al., 2015).

Even though there is scientific interest in monitoring 

forests and soils, there is a lack of data to carry out 

efficient monitoring and determine the current state of 

these resources (Liang et al., 2016). In 2017, the Food 

and Agriculture Organization (FAO), the 

Intergovernmental Technical Panel on Soils (ITPS), 

the Intergovernmental Panel on Climate Change 

(IPCC), the Global Soil Partnership (GSP), the Science- 

Policy Interface of the United Nations Convention to 

Combat Desertification (UNCCD-SPI), and the World 

Meteorological Organization (WMO) jointly organized 

a Global Symposium on Soil Organic Carbon. This 

symposium provided guidelines for developing efficient 

systems and protocols for measuring SOC with higher 

accuracy (FAO, 2020a). In the last decade, digital soil 

mapping (DSM) approaches have focused on mapping 

SOC using remote sensing techniques as the main 

emerging tool to improve spatial estimates of SOC 

(Mahmoudzadeh et al., 2020; Padarian et al., 2019).

DSM allows quantifying the spatial variation of SOC 

stocks using environmental covariates (Zhang et al., 

2017), which describe the relationship of a soil attribute 

and its spatially implicit forming factors (Jenny, 1941). 

The environmental auxiliary variables of SOC can be 

obtained from digital elevation models (DEM) (Farr 

et al., 2007; B. Wang et al., 2018), remote sensing data 

(Duarte et al., 2020; Wulder et al., 2016; Xiao et al., 2019) 

and climatic data (Ermida et al., 2020; Veronesi & 

Schillaci, 2019). The easy accessibility of satellite images 

combined with Machine Learning (ML) techniques has 

significantly improved the accuracy of SOC mapping. In 

a review of 120 studies on SOC mapping, in which 

different ML techniques were applied, it was found that 

the Random Forest (RF) algorithm has optimum perfor-

mance in the selection of environmental covariates for 

SOC mapping. At the same time, it also behaves better 

than other ML techniques and Multiple Linear 

Regression (MLR) (Lamichhane et al., 2019).

There are few studies on SOC mapping of 

Dominican Republic lands. The main report comes 

from the Global Soil Organic Carbon Map 

(GSOCmap) launched by FAO. In fact, GSOCmap 

represents the first global estimation of SOC content 

carried out with a participatory approach to compile all 

the available data on soils at the national level (FAO, 

2020). With regard to the tropics, SOC estimates are 

very limited on forest lands since most of the research 

has focused on estimating SOC from agricultural lands.

The objective of this study was to estimate SOC con-

tent in forest lands of the Dominican Republic and their 

spatial distribution by applying ML techniques, a dataset 

of environmental covariates obtained from remote sen-

sing (RS) and field data. We compared the influence of 

three groups of predictive variables for SOC mapping: (1) 

multispectral remote sensing variables, (2) topographic 

variables, and (3) climatic variables. The performance of 

the ML model was also evaluated. Our model was imple-

mented in the Google Earth Engine (GEE) cloud-based 

computing platform (Gorelick et al., 2017).

Materials and methods

The overall structure of the method (Figure 3) con-

sisted of five stages such as: (i) selection of a geospatial 

dataset; (ii) data pre-processing; (iii) model building/ 

development; (iv) evaluation of the model perfor-

mance; and (v) mapping of SOC.

Study area

The study was carried out in the Island of Hispaniola 

(central region of the Caribbean), Dominican Republic. 

It corresponds to forest lands located between 17°36′ 
and 19°58′ latitude north, and 68°19′ and 72°01′ long-
itude west, belonging to the Greater Antilles. The terri-

tory of the country covers 48,198 km2 (Figure 1).
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The Dominican Republic has a tropical climate, 

which is altered only by the Alyssian winds of the 

Atlantic and topographical factors of the Island. 

The average annual temperature is 25°C, with 

August being the hottest month and January the 

coldest. Precipitation is distributed in two seasons: 

a rainy season, which goes from April to June and 

from September to November, with precipitation of 

2,500 mm yr−1; and a dry season, which goes from 

December to March, with precipitation of 450 mm 

yr−1. On the Island, the areas with the highest 

humidity are in the north because they are influ-

enced by the Atlantic Ocean, while the driest areas 

are found to the south, along the Caribbean coast 

(Cano-Ortiz et al., 2015).

The country’s native forests (Figure 2) include 

pine, broadleaf, dry and mangrove forests. Pine 

forests are primarily made up of Pinus occidentalis, 
a species endemic to the Island (Kennedy et al., 

2005). The composition of the broadleaf forests is 

diverse, with species such as Swietenia mahagoni, 
Ocotea spp., Sloanea berteriana, Didymopanax tre-
mulus, and Clusia rosea. Dry forests include various 
species such as Guaiacum o�cinale, Phylostilum 
braziliensis, and Prosopis julifora, while mangrove 
forests are composed of Avicennia germinans, 
Laguncularia racemosa, Conocarpus erectus and 
Rizophora mangle (MARN, 2019). Shrubland and 

herbaceous vegetation can also be found (Martin 

& Fahey, 2006).

The soils are divided into 10 classes based on 

characteristics such as depth, slope, and drainage. 

Soil classes correspond to savannah, non-calcareous 

clay and calcareous soils as well as soils derived 

from igneous rocks, soils of volcanic and meta-

morphic origins, recent alluvial soils, organic soils, 

wetlands, coastal beaches and dunes (MARN, 

2012). Our study focused on soils covered by 

pine, broadleaf, dry and mangrove forests, covering 

an area of 14,499 km2.

Figure 1. Study area: (a) General location of the Dominican Republic, (b) regional location, (c) study area (forest lands).

Figure 2. Map of soil sample location and forest types of the Dominican Republic.
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Reference data

Forest mask

To estimate SOC stocks, the study area was defined 

with a forest mask. For this, we used the land cover 

map prepared in 2015 by the Ministry of the 

Environment and Natural Resources (MARN) of the 

Dominican Republic. On this map, the concept of 

forest was applied in accordance with the FAO 

Forest Resources Assessment (FRA-FAO) defined by 

the country as “Natural or planted ecosystem of at least 
0.5 hectares covered by trees higher than 5 meters and 
with a canopy cover of more than 40%” (FAO, 2020b). 
Forest types (Figure 2) that are part of this study are 

defined as follows (MARN, 2012):

Broadleaf forests. represented by trees where the com-

bination of broad-leaved species predominates; it com-

prises plant communities from semi-humid in 

transition to cloudy. It is the type of forest with the 

largest existence in the country. It is classified as cloudy 

broadleaf forest, located in areas with elevations from 

600 to 2,300 m above sea level (m.a.s.l.); moist broadleaf 

forest in areas with elevations from 300 to 1,500 m.a.s.l. 

and semi-humid broadleaf forest located in areas with 

elevations up to 900 meters above sea level, or m.a.s.l.

Dry forests. mostly secondary forest; they are com-

posed of semi-deciduous trees that develop at eleva-

tions below 500 m.a.s.l. The greatest presence of these 

forests is located in the lowlands, both south- 

southwest and northwest of the country.

Pine forests. composed of pine species. The authentic 

Dominican pine forest is located especially in the 

highlands and the dominant species is Pinus occiden-
talis, which is found in the large mountain ranges with 
elevations above 2,000 m.a.s.l. The pine forest has two 

types of cover: high and low canopy cover density.

Mangrove forests. Coastal and wet ecosystems found in 

swampy and flooded regions; they mainly belong to the 

Rhizophoraceae family, with exposed supporting roots. 

This forest is located at elevations below 20 m.a.s.l.

Soil organic carbon database

In this study, 268 soil samples from the National Forest 

Inventory (NFI) were used. The NFI was collected in 

2018 by the MARN of the Dominican Republic with the 

support of the REDD/CCAD-GIZ program and the 

World Bank’s Forest Carbon Partnership Facility 

(FCPF) (available in: https://www.sica.int/documentos/ 

inventario-forestal-nacional-de-republica-dominicana_ 

1_126744.html) (MARN, 2021). The sampling design 

adopted by the NFI corresponds to stratified sampling 

for each forest stratum. For building the NFI, the meth-

odology proposed by the REDD/CCAD-GIZ program 

was used (Feliz et al., 2019; MARN, 2021).

Data used were taken from 268 plots located in 

the different forest types (Figure 2; Table 1). Each 

soil sample was collected from the NFI at a depth 

of 0 to 15 cm and their geographic coordinates 

were recorded with a global positioning system 

device (GPS). In the NFI, SOC data were reported 

with an extrapolation from depth of 0 to 15 cm. 

Figure 3. Flowchart: Dataset of environmental covariates obtained from remote sensing and combined with soil samples to define 
different predictive models using machine learning for mapping the spatial distribution of SOC.

216 E. DUARTE ET AL.

https://www.sica.int/documentos/inventario-forestal-nacional-de-republica-dominicana_1_126744.html
https://www.sica.int/documentos/inventario-forestal-nacional-de-republica-dominicana_1_126744.html
https://www.sica.int/documentos/inventario-forestal-nacional-de-republica-dominicana_1_126744.html


The samples were numbered, bagged, and brought 

back to the Laboratory of Soils and Water of the 

Dominican Institute of Agricultural and Forestry 

Research Agricultural Technology Center 

(CENTA) and the Dominican Agribusiness 

Laboratory (LAD). After drying, the samples were 

weighed and passed through a 2-mm sieve. The 

determination of SOC content (Mg C ha−1) is 

based on the Walkley & Black chromic acid wet 

oxidation method (Walkley & Black, 1934).

Bulk density (BD) was determined on subsamples 

dried at 105°C as described by (Dane Topp et al., 

2002). Results were reported as g cm−3 on an oven- 

dry basis and SOC was reported as g (100 g)−1. Soil 

organic carbon stock (SOCS) was computed as the 

product of three variables, organic carbon content 

(C), bulk density (BD), and thickness (D). SOCS was 

calculated according to Equation 1: 

SOCstock ¼ C ÿ BDÿ Dÿ 1�
gravel %½ ÿ

100

ÿ ÿ

(1) 

Where C is the concentration of soil carbon (g 

C (100 g)−1); BD is bulk density (g cm−3), D is the 

thickness of the layer (cm), gravel [%] is the percen-

tage of gravel in the soil sample.

Table 1 shows the descriptive statistics of SOC (0– 

15 cm depth) samples collected from the NFI. SOC 

contents ranged from 15.95 to 282.38, with a mean 

value of 110.35 and a median of 101.34 Mg C ha−1. The 

coefficient of skewness is −0.46 Mg C ha−1. The sam-

pling point´s standard deviation (SD) is 63.78 Mg 

C ha−1 and is lower than the mean value.

Once the forest mask and environmental variables 

was defined, a method to estimate SOC content in 

forest soils with a geospatial dataset was developed, 

they were combined with the soil samples collected in 

the field, and a regression model was applied for each 

of the three models; the covariates were divided using 

the RF algorithm in the GEE platform; finally, the 

models were evaluated and the spatial distributions 

and SOC stock map was built (Figure 3).

We iterated the model A, B, and C and calculated the 

average standard deviation (SDs) to analyze the uncer-

tainty of each model in predicting topsoil SOC (Figure 6).

Environmental predictors

For the digital mapping of SOC, we selected 20 accessible 

and commonly used predictive environmental dataset 

covariates, which represent key factors for the spatial 

distribution and formation of SOC content such as: 

vegetation, soil, topography, and climate (McBratney 

et al., 2003). These covariates represent factors of soil 

formation according to (Jenny, 1941). Further spectral 

vegetation indices (SVIs) were calculated using Landsat- 

8 images (Table 2). From the combination of these 

dataset covariates with data soil samples, three models 

with different combinations of predictive variables were 

built, using the RF algorithm for the digital mapping of 

SOC. The models were as follows:

● Model A: Multispectral remote sensing variables 

+ topographic variables + climatic variables.
● Model B: Topographic and climatic variables.
● Model C: Multispectral remote sensing variables.

For each of the models, the RF algorithm was 

applied, and its accuracy was evaluated. The relative 

importance of the variables in the model was also 

assessed. All the datasets were obtained and processed 

in the GEE cloud-based platform.

Multispectral imagery. We used Landsat 8 collection 

1 Tier 1 Operational Land Imager (OLI) surface reflec-

tance data with 16 days and 30 m resolutions, available 

in the GEE platform, using the Landsat Digital 

Number (DN) values, representing scaled, calibrated 

at-sensor radiance; GEE collection snippet: ee. 

ImageCollection(“LANDSAT/LO08/C01/T1_RT”).

All Landsat-8 OLI surface reflectance data from 

the year 2018 ± 0.5 (available in the GEE platform) 

were used in this study: a total of 92 images from 

path 123 and row 32; 89 images from path 125 and 

row 34 and 94 images from path 125 and row 33. 

Landsat surface reflectance data were atmospheri-

cally corrected using the Landsat Surface 

Reflectance Corrected (LaSRC) (OLI) algorithms 

(Masek et al., 2013); We used methods provided 

by Earth Engine for filtering image collections 

using the code “imageCollection.filterDate()” and 

we built a composite mosaic multiband and multi- 

Table 1. Descriptive statistics of soil organic carbon (SOC) stocks (Mg C ha−1) (0–15 cm depth) collected from the National Forest 
Inventory (NFI).

SOC (Mg C ha−1)

Description n Mean Median Min Max SD Skewness Kurtosis

Dry forest 52 126.47 124.97 18.88 282.38 64.02 0.49 −0.12
Pine forest 43 69.68 57.64 19.78 187.81 41.53 1.03 0.34
Broadleaf forest 129 105.57 94.64 15.95 274.49 61.93 0.65 −0.30
Mangrove forest 44 145.06 140.53 27.92 261.87 63.43 −0.07 −0.88
Total forest 268 110.35 101.34 15.95 282.38 63.78 0.57 −0.46

Min: minimum; Max: maximum; SD: standard deviation
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date formed by combining spatially overlapping 

images into a single image based on a function of 

multiple spectral and temporal aggregation ranges; 

compositing in GEE refers to the process of com-

bining spatially overlapping images into a single 

image based on an aggregation function, and 

mosaicking refers to the process of spatially assem-

bling image datasets to produce a spatially contin-

uous image. (For more details see GEE codes 

developed in this study available in Appendix 

A or visit https://developers.google.com/earth- 

engine/guides/ic_composite_mosaic)

The CFmask algorithm was used to mask cloud and 

shadow produced, as well as a per-pixel saturation mask 

(Zhu & Woodcock, 2012). In addition, the empirical 

Earth rotation model (ERM) was used as a basis to 

perform a terrain illumination correction algorithm 

(Tan et al., 2013), which allowed conducting the topo-

graphic correction for each image. For reflectance 

images, we used the medoid method (Flood, 2013).

Following radiometric, geometric, and atmospheric 

corrections, digital numbers for the blue (B1), green 

(B2), red (B3), near-infrared (B4), and shortwave IR-2 

bands (B6) were extracted. Several spectral indices 

Table 2. Predictive covariates derived from Landsat 8 OLI.

Dataset (Covariates) Abbr. Formula References

Remote Sensing-derived covariates

Normalized Difference Vegetation Index NDVI NDVI ¼ NIR�Redð Þ
NIRþRedð Þ

(Sobrino & Raissouni, 2000)

Enhanced Vegetation Index EVI EVI ¼ 2:5 ÿ NIRþRedð Þ
NIRþ6ÿRed�7:5ÿBlueþLð Þ

(Huete et al., 1997)

Soil-Adjusted Vegetation Index SAVI SAVI ¼ NIR�Redð Þ
NIRþRedþLð Þ ÿ 1þ Lð Þ (Huete, 1988)

Index-Based built-up Index IBI IBI ¼ NDBI� SAVIþMNDWIð Þ=2
NDBIþ SAVIþMNDWIð Þ=2

(Xu, 2008)

Bare Soil Index BSI BSI ¼ SWIR1þRedð Þ� NIRþBlueð Þ
SWIR1þRedð Þþ NIRþBlueð Þ

(Piyoosh & Ghosh, 2018)

Green Normalized Difference Vegetation Index GNDVI GNDVI ¼ NIR�Greenð Þ
NIRþGreenð Þ

(Alba et al., 2017)

Near-infrared reflectance of vegetation NIRv NIRv ¼ NDVImedianmonthly � 0:08
� ÿ

xNIRmedianmonthly (Badgley et al., 2017)

Band 2 Blue BBLUE Wavelength of 0.450–0.515 μm
Band 3 Green BGREEN Wavelength of 0.525–0.600 μm
Band 4 Red BRED Wavelength of 0.630–0.680 μm
Band 5 Near Infrared NIR Wavelength of 0.845–0.885 μm
Band 6 Shortwave Infrared-1 SWIR1 Wavelength of 1.560–1.660 μm
Band 7 Shortwave Infrared-2 SWIR2 Wavelength of 2.100–2.300 μm

Figure 4. Example of the geospatial dataset used and computed on the Google Earth Engine platform. (a) slope; (b) precipitation; 
(c) Normalized Difference Vegetation Index (NDVI); (d) Soil-Adjusted Vegetation Index (SAVI).
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were then calculated: The Bare Soil Index (BSI), the 

Normalized Difference Vegetation Index (NDVI), the 

Soil-Adjusted Vegetation Index (SAVI), the Index- 

Based built-up Index (IBI), the Enhanced Vegetation 

Index (EVI) and the Green Normalized Difference 

Vegetation Index (GNDVI) with a spatial resolution 

of 30 m. (Table 2) and (Figure 4).

Climatic variables. We used the climatic datasets 

available in the GEE platform closest to the date soil 

sampling, such as Moderate Resolution Imaging 

Spectroradiometer (MODIS) MOD11A1 V6 product, 

which provides daily land surface temperature (LST) 

and emissivity Daily Global 1 km. GEE collection snip-
pet: ee.ImageCollection(“MODIS/006/MOD11A1”). 
The temperature value is derived from the 

MOD11_L2 swath product (Wan, 2014).

Relative humidity data (2 m above ground) were 

obtained from the Global Forecast System (GFS). This 

is a weather forecast model produced by the National 

Centers for Environmental Prediction (NCEP) and 

National Aeronautics and Space Administration 

(NASA). The GFS is a coupled model, composed of 

an atmosphere model, an ocean model, a land/soil 

model, and a sea ice model, which work together to 

provide an accurate picture of weather conditions 

(Saha et al., n.d.). GEE Collection snippet: ee. 
ImageCollection (“NOAA/GFS0P25”).

For the precipitation data, we used the Climate 

Hazards Group InfraRed Precipitation with Stations 

(CHIRPS) dataset, which builds on previous approaches 

to “smart” interpolation techniques and high resolution, 

long period of record precipitation estimates based on 

infrared Cold Cloud Duration (CCD) observations 

(Funk et al., 2015). GEE collection snippet: ee. 
ImageCollection(“UCSB-CHG/CHIRPS/DAILY”).

Topographic variables. Terrain analysis is crucial 

for modeling environmental systems. Specifically, 

the topography is considered as a variable that 

can largely explain SOC changes. In fact, models 

that take topographic attributes into account can 

provide better estimates of SOC stocks (McBratney 

et al., 2003). We used the digital elevation model 

(DEM) derived from NASA’s Shuttle Radar 

Topography Mission (SRTM DEM) (Farr et al., 

2007). We calculated the topographic slope, aspect 

and elevation from this SRTM V3 product (SRTM 

Plus) at a resolution of 1 arc-second (approximately 

30 m). GEE collection Snippet: ee.Image(“USGS/ 
SRTMGL1_003”). The number of terrain and cli-
mate-based covariates used within each dataset is 

shown in Table 3, and an example of its geogra-

phical representation is shown in Figure 4.

Data processing

Google earth engine (GEE) platform

The model for mapping SOC stocks in forests devel-

oped in the present study was built in the GEE cloud- 

based computing platform. GEE is a platform 

designed for scientific analysis at the petabyte (PB) 

scale and has an extensive public data catalog for 

earth observation (Gorelick et al., 2017). One way to 

use this platform is using an online tool called The 

Code Editor, which lets the user access the platform 

using a scripting language (JavaScript).

GEE has hosted historical images of the Earth for 

more than forty years. The images collected daily are 

made available to the public for data mining on 

a global scale. GEE allows processing massive data of 

a raster format for large areas and with high volumes 

of information. In our case, topographic, climatic and 

vegetational variables were analyzed (Tables 2 and 3) 

with high performance and minimum user involve-

ment in the processing. The algorithm used in GEE to 

estimate SOC contents was the Random Forest (RF). 

The codes developed in this study using the GEE 

cloud-based computing platform are available in 

Appendix A.

Random forest (RF) modelling

In this study, the RF algorithm was selected to predict 

the SOC stocks in the forest ecosystem of the 

Dominican Republic. RF is one of the most popular 

and most powerful supervised ML algorithms that can 

perform both regression and classification tasks. As the 

name suggests, this algorithm builds a set of regression 

trees. Each of the trees predicts the result in each pixel, 

while the final prediction is obtained averaging these 

values (Breiman, 2001). We used the RF to estimate the 

relative importance of the predictive variables.

Table 3. Terrain and climate-based covariates.

Dataset 
(Covariates) Abbreviation Definition

Terrain-based 
covariates

(1) Elevation Elev Height above sea level (m)
(1) Slope Slo Average gradient above flow path
(1) Aspect Asp The compass direction of the 

maximum rate of change
(1) Topographic 

Wetness 
index

TWI Combined local upslope contributing 
area and slope

Climatic-based 
covariates

(1) Temperature Temp It is derived from the daily 
temperature values

(1) Precipitation Prec It is derived from the daily 
precipitation values

(1) Relative 
Humidity

RH Water vapor in the air, compared to 
how much it could hold a specific 
temperature
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For the prediction accuracy, the 268 SOC samples 

were randomly divided into 2 sets: 70% of the total 

samples were used as model training data (n = 188), 

and the remaining 30% for model validation and 

accuracy assessment (n = 80). RF modelling was per-

formed using the GEE cloud computing platform 

applying the following line of code: ee.Classifier. 
smileRandomForest.setOutputMode(“REGRESSION”). 
The principal parameters of the algorithm were: num-

ber of decision trees = 100 and default values to min 

leaf population (1), variables per split (square root of 

the number of variables), bag fraction (0.5), max nodes 

(defaults to no limit), seed (0) and set output 

mode = regression.

Model evaluation and uncertainty analysis

To evaluate the performance of the SOC model, 

five indexes were calculated using the following 

formulas: coefficient of determination (R2), Lin’s 

concordance correlation coefficient (LCCC) (Lin, 

1989), root-mean-square error (RMSE), mean abso-

lute percentage error (MAPE), and mean absolute 

deviation (MAD). 

R2 ¼

Pn
i¼1 yi � ÿyi

� ÿ

fi � ÿf i
� ÿ� ÿ2
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ÿ

ÿ

ÿ
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ÿ

n
ÿ 100 (5) 

MAD ¼

P

yi � fij j

n
(6) 

where n i ¼ 1; 2; . . . ; nð Þ is the number of samples 

used for the ML model, yi is the value observed (Mg 

C ha−1), ÿyi is the corresponding mean value, fi is the 

predicted value (Mg C ha−1), ÿfi is mean value. ∂x and ∂y 
are the variances of the predicted and measured 

values; r is the correlation coefficient between the 

predicted value and the measured value.

The prediction algorithm with the lowest MAD, 

MAPE and RMSE, and highest R2 and LCCC values 

are determined as the best model for SOC prediction. 

We iterated model A, B, and C and calculated the average 

standard deviation (SDs) to analyze the uncertainty of 

each model in predicting topsoil SOC (Figure 6).

Results

Exploratory data analysis

Geospatial environmental predictive datasets

The summary statistics for each of the 20 environ-

mental covariates at each sampling site used in the 

present study are shown in Table 4. To describe the 

Table 4. Descriptive statistics of remote sensing-derived environmental variables at sample sites.

Dataset Unit Mean Median Min Max SD Skewness Kurtosis

Remote Sensing imagery

NDVI digital number 0.79 0.80 0.43 0.93 0.08 −1.02 1.22
EVI digital number 2.36 2.35 0.90 3.56 0.44 −0.20 0.09
SAVI digital number 1.18 1.21 0.65 1.40 0.13 −1.02 1.22
IBI digital number −0.27 −0.28 −0.54 0.02 0.10 0.00 −0.06
BSI digital number −0.29 −0.30 −0.58 0.07 0.12 0.28 −0.19
GNDVI digital number 0.72 0.73 0.49 0.85 0.07 −0.76 0.40
NIRv digital number 2,195.10 2,131.65 788.13 4,209.52 623.93 0.28 −0.29
BBLUE digital number 303.68 301.00 125.00 600.00 81.57 0.55 0.65
BGREEN digital number 497.71 488.00 245.00 1,007.00 114.20 0.63 1.22
BRED digital number 351.11 327.00 115.00 1,048.00 131.60 1.52 4.17
NIR digital number 3,057.91 2,987.00 1,445.00 5,235.00 624.17 0.28 0.08
SWIR1 digital number 1,510.44 1,537.00 583.00 2,698.00 404.05 0.11 0.16
SWIR2 digital number 648.53 609.00 178.00 1,606.00 256.88 0.93 1.45

Terrain-based covariates
Elevation m 438.60 279.75 −1.17 2,359.85 499.42 1.65 2.43
Slope degree 10.51 8.90 0.00 45.32 9.38 0.84 0.14
Aspect degree 187.18 185.99 0.09 359.61 116.74 −0.07 −1.29
TWI digital number 9.35 8.99 0.00 19.19 2.56 0.37 3.29

Climatic-based covariates
Temperature means degree Celsius 26.66 27.85 0.00 33.88 5.79 −3.31 12.76
Precipitation means mm/day 3.70 3.58 0.00 7.41 1.45 0.37 −0.62
Relative humidity Means % 77.15 76.36 62.47 86.69 5.66 0.06 −1.06

NDVI, Normalized Difference Vegetation Index; EVI, Enhanced Vegetation Index; SAVI, Soil Adjust Vegetation Index; IBI, Index-Based built-up Index; BSI, Bare Soil 
Index; GNDVI, Green Normalized Difference Vegetation Index; NIRv, Near-infrared reflectance of vegetation; BBLUE, Landsat 8 blue band reflectance; BGREEN, 
Landsat 8 green band reflectance; BRED, Landsat 8 red band reflectance; NIR, Landsat 8 band 5 near-infrared; SWIR1, Landsat 8 band 6 Shortwave infrared-1; 
SWIR2, Landsat 8 band 7 Shortwave infrared-2; TWI, Topographic Wetness Index.
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environmental covariates, they were divided into three 

groups that fit different models in our study: (i) ima-

gery remote sensing data set, (ii) terrain-based covari-

ate data set, and (iii) climatic-based covariates.

The relationships between SOC content and each 

predictive covariate is of great importance to know 

information about the contribution of each covariate 

in the model. Pearson`s correlation analysis between 

Figure 5. Pearson`s correlation coefficient analysis between observed SOC stocks and all environmental variables based on 268 
sample sites.

Figure 6. Scatter plot of observed vs. predicted values (Mg C ha−1) for SOC content (0–15 cm) using the Random Forest Algorithm. 
(a) The predicted data are derived from Model A: Multispectral remote sensing variables + topographic variables + climatic 
variables; (b) Model B: Topographic and climatic variables and (c) Model C: Multispectral remote sensing variables.
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SOC and predictive covariates was derived as shown in 

Figure 5. SOC stock was positively correlated with 

temperature, TWI, Bblue, Bred and Bgreen band, but 

negatively correlated with precipitation, relative 

humidity, elevation, and slope. Interestingly, the cor-

relations with the images were the most significant. 

Finally, we found that there was multicollinearity 

between the vegetation indexes derived from remote 

sensing and SOC.

Soil organic carbon models

SOC content in forest-covered soils of the Dominican 

Republic were estimated using three different models 

that grouped a series of geospatial datasets. Table 5 

shows the descriptive statistics of soil organic carbon 

(values in Mg C ha−1) for each model. Model 

A recorded the highest mean value of SOC (110.35 Mg 

C ha−1). The analysis of variance applied showed no 

significant differences (p < 0.05) between the three mod-

els evaluated. The use of climatic and topographic cov-

ariates helped improve the model, but not significantly. 

Using only multispectral imaging can produce good 

results in digital mapping of SOC at a depth of 0–15 cm.

Spatial model performance

Comparisons of the performance for the three dataset 

models by cross-validation is shown in Table 6, Figures 6 

and 7. We found that Model A is the model with the best 
performance, explaining 83% of the spatial variation of 

SOC. In general, the more predictors, the better the 

model. This model groups 20 predictive variables in 

a dataset: multispectral remote sensing variables + 

topographic variables + climatic variables. Model 

B (topographic and climatic variables) yielded an 

R2 = 0.77 and an RMSE = 38.57 Mg C ha−1. 

Interestingly, Model C (only multispectral remote sen-

sing-derived variables) yielded an R2 = 0.79 and an 

RMSE = 35.69 Mg C ha−1. These results are consistent 

with the significant correlations between covariates and 

SOC (see, Figure 7).

We iterated the model A, B, and C and calculated 

the average standard deviation (SDs) to analyze the 

uncertainty of each model in predicting topsoil SOC 

(Figure 6). We found the highest SD in Model C for all 

forest types and Model A with the lower uncertainty 

compared to models B and C.

Covariates relative importance

The average relative importance of each covariate derived 

from the geospatial dataset to estimate SOC was calcu-

lated. To facilitate the analysis for each model, we com-

bined the relative importance of all environmental 

covariates to 100% (Figure 8). For the dataset grouped 

in Model A, the 3 most important covariates were slope, 

temperature and NDVI (34% of the total relative impor-

tance). The vegetation indices were ranked at different 

levels. In Model B, which groups climatic and topo-

graphic covariates, the covariates of elevation and pre-

cipitation recorded the highest relative importance (48% 

of the total relative importance). For model C, which only 

groups covariates derived from Landsat 8 satellite images, 

the Index-Based built-up Index (IBI) was the covariate 

with the highest relative importance in the model. For the 

IBI index, three thematic indices were used: the Modified 

Normalized Difference Water Index (MNDWI), the Soil 

Adjusted Vegetation Index (SAVI), and the Normalized 

Difference Built-up Index (NDBI; Xu, 2008). Table 2 

provides further details of the indices used and Figure 9 

provides further details of the indices per each type of 

forest.

SOC stock spatial distribution

A spatially explicit SOC map was created using the 

GEE cloud computing platform. The results obtained 

with the three spatial distribution models to predict 

SOC content in forest-covered areas of the Dominican 

Republic are shown in Figure 10. Non-forest areas 

were excluded from the analysis and are shown with-

out color on the map.

Table 5. Descriptive statistics of predicted soil organic carbon (Mg C ha−1) models.

Model Mean Median Min Max SD SE Lower Upper Skewness Kurtosis

Model A: Multispectral remote sensing variables + topographic 
variables + climatic variables

110.35 107.74 46.46 191.33 36.10 2.21 105.78 114.92 0.31 −0.85

Model B: Topographic and climatic variables 110.87 108.86 49.54 200.33 33.53 2.05 106.47 115.27 0.30 −0.59
Model C: Multispectral remote sensing variables 110.45 108.04 51.76 198.28 35.96 2.20 106.23 114.67 0.36 −0.73

Min: minimum; Max: maximum; SD: standard deviation; SE: standard error; Lower and Upper: the lower and upper limits of the mean at 95% probability.

Table 6. Comparison and evaluation of predicted model per-
formance by cross-validation.

Model
Mg 

C ha−1 R2

RMSE 
(Mg 

C ha−1) MAD MAPE LCCC

Model A: Multispectral 
remote sensing 
variables + 
topographic variables 
+ climatic variables

110.35 0.83 35.02 27.90 40.18 0.78

Model B: Topographic 
and climatic variables

110.87 0.77 38.57 30.00 44.13 0.72

Model C: Multispectral 
remote sensing 
variables

110.45 0.79 35.69 28.76 41.00 0.76

R2: coefficient of determination; RMSE: root mean square error; MAD: mean 
absolute deviation; MAPE: mean absolute percentage error and, LCCC: Lin’s 
concordance correlation coefficient.
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Analyzing the best model obtained in our study 

(Model A), identified that the spatial patterns of 

SOC are closely related to the type of forest. The 

highest SOC (0–15 cm depth) contents are found in 

the mangrove forests that are located in the coastal 

areas of the country, with average estimates of 

131.87 Mg C ha−1, and maximum and minimum 

values of 193.09 Mg C ha−1 and 63.91 Mg C ha−1, 

respectively (Table 7). The lowest SOC content is 

found in the soils covered by pine forests, especially 

those located in the elevated and steep slopes, in the 

central and southern region of the country. These 

soils have a SOC mean value of 89.06 Mg C ha−1 

and a minimum value of 44.76 Mg C ha−1. Most of 

these soils are dominated by degraded forests with 

low productivity and dry shrub vegetation. Their 

low SOC content is attributed to steeper slopes, 

which make soils more susceptible to erosion and 

greater water discharge.

We found that in the soils covered by forests in the 

Dominican Republic, a total of 144,051,831 Mg C is 

stored in the topsoil (0–15 cm depth), with 52.1% 

corresponding to soils covered by broadleaf forests, 

31.2% covered by dry forests, 14.3% covered by pine 

forests, and 2.4% covered by mangrove forests. Table 7 

shows more details of the results of SOC obtained in 

the three models for forest type.

Discussion

Method for measuring and monitoring SOC stocks: 

a contribution to regional and global initiatives

SOC stocks have acquired great relevance due to the role 

they play in climate regulation and as an important 

indicator of soil quality. International organizations 

such as The United Nations Framework Convention on 

Climate Change (UNFCCC), the United Nations 

Convention to Combat Desertification (UNCCD) and 

the Convention on Biodiversity (CBD) have widely 

recognized the importance of SOC in the international 

framework of climate change mitigation. In this sense, 

there have been emerging regional initiatives aiming at 

the sustained production of soil information, such as the 

Figure 7. Standard deviation (SD) of SOC stock at 0–15 cm predicted from the random forest (RF) model.
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Figure 8. Relative importance in the Random Forest (RF) models trained for different geospatial datasets.

Figure 9. Distribution of the spectral indices for each type of forest derived from Landsat 8.
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Soil Information System for Latin America and the 

Caribbean (SISLAC), or global initiatives such as 

ISRIC – World Soil Information, legally registered as 

the International Soil Reference and Information 

Center, which has the mission to serve the international 

community as custodian of global soil information. 

Similarly, the Group of Earth Observation (GEO) has 

established a Global Soil Information System (GLOSIS) 

as part of the Global Earth Observation System of 

Systems (GEOSS). All of these initiatives have encour-

aged countries to establish national systems for monitor-

ing and measuring SOC. Therefore, there is a need to 

develop accurate, replicable and low-cost methods to 

quantify and monitor SOC stock changes.

In the present study, we performed a digital map-

ping of SOC stocks (in the area under study), using 

a combination of freely accessible geospatial datasets 

provided in the GEE cloud computing platform, and 

field data using the RF algorithm to predict the dis-

tribution of SOC in forest soils of the Dominican 

Republic. To our knowledge, this is the first attempt 

to map the SOC stocks using this type of technique, in 

the country and the tropical region of Central America 

and the Caribbean. The results obtained are encoura-

ging because the three models used had a good per-

formance, even with variables derived only from 

Landsat 8 OLI images (Model C).

Compared with other methods used to map SOC 

stocks in tropical regions (Guevara et al., 2018; Ramesh 

et al., 2015; Rossi et al., 2009; Vasques et al., 2016), our 

method eliminated excessive soil sampling, which can 

result in a high cost, particularly in those territories 

covered by forests where access is very difficult.

Importance of variables in the SOC prediction 

model

The CLORPT model (CL: Climate; O: Organism, vege-

tation; R: Relief; P: Parent material; and T: time) (Jenny, 

1941) and the SCORPAN model (S: property or soil 

Figure 10. Distribution maps of soil organic carbon (Mg C ha−1) derived with the Random Forest Algorithm. Maps are shown with 
a masking layer of non-forest land. A1) Model A included all predictive covariates (Multispectral remote sensing variables + 
topographic variables + climatic variables); A2) zoomed-in image to SOC map derived from Model A. B1). Model B included 
topographic and climatic variables; B2) zoomed-in image to SOC map derived from Model B. C1) Model C included only 
multispectral remote sensing variables, C2) zoomed-in image to SOC map derived from Model C.
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class; C: climate; O: organisms; R: topography; P: parent 

material; A: age or time factor; and N: space, spatial 

position) (McBratney et al., 2003) are conceptual mod-

els commonly used for digital soil mapping since they 

relate environmental covariates to soil properties. 

However, these relationships between covariates and 

properties differ depending on the geographical area 

of the soil being analyzed. A review conducted by 

(McBratney et al., 2003) indicated that the key environ-

mental covariates to infer soil properties were relief 

(80% of studies), followed by soil class (S) (35%), vege-

tation (O) and parent material (P) (both 25%), spatial 

position (N) (20%) and climate (C) (5%).

Several studies have indicated that topographic fac-

tors such as elevation and slope have a higher correla-

tion with SOC changes (J.L. Boettinger et al., 2010; 

Hinge et al., 2018). The NDVI allowed us to understand 

the importance of the amount of biomass and vegetation 

cover to predict SOC stocks. Other studies have also 

reported that SOC can be estimated only by the presence 

of vegetation (Yang et al., 2008; Zhao & Shi, 2010). 

Therefore, the NDVI can be used as an approximation 

to determine SOC. The BSI allowed us to understand the 

importance of analyzing bare soil, especially in highly 

fragmented secondary forests such as the forests of the 

Dominican Republic and many tropical forests. This 

type of forest structure indicated that vegetation and 

bare soil combine to generate a forest with a low canopy 

density (mainly fragmented forests due to human 

intervention). Our results show that the IBI can signifi-

cantly enhance the model to predict SOC in fragmented 

forests with a low canopy density effectively suppressing 

background noise caused for bare soil. Xu (2008) found 

that the IBI possesses a positive correlation with land 

surface temperature and negative correlations with the 

NDVI.

In terms of the climatic covariates used in our study, 

temperature was the second most important variable, 

which explains the SOC changes in Model A. In this 

sense, previous research has indicated that temperature 

is a direct predictor of SOC since it has a major influence 

on determining the type of vegetation, its growth and the 

microbial decomposition of organic matter (M. Wang 

et al., 2014).

Comparative analysis of other SOC measurements 

and mapping initiatives in the region

There have been different local initiatives for the 

measurement of SOC in the Central American 

Region in recent years. These have focused on 

collecting soil C data as part of a multipurpose 

methodology of local forest inventories, including 

the 5 pools of carbon defined by the IPCC. 

However, a wall-to-wall mapping of SOC has not 

been generated yet. Our study is the first report in 

which soil C data is used in combination with ML 

techniques and open-access dataset and available 

in the GEE cloud computing platform for geogra-

phically explicit mapping of the SOC.

ML techniques are widely used in digital SOC 

mapping as they combine complex and non-linear 

relationships between different soil attributes and 

predictive environmental covariates (Drake et al., 

2006). Although various prediction algorithms 

have different capabilities, size of the training sam-

ple affects more than the selection of models to 

improve the prediction accuracy of SOC 

(Somarathna et al., 2017).
By using the RF algorithm, Model A yielded a SOC 

mean value (0 − 15 cm) of 110.35 Mg C ha−1 (Table 5). 

This value is higher than the mean value of 81.04 Mg 

C ha−1 reported in the Global Soil Organic Carbon 

Map (GSOCmap V1.5) prepared by the Food and 

Agricultural Organization (FAO). The global soil car-

bon map consists of national SOC maps, developed as 

1 km soil grids, at a depth of 0–30 cm (FAO, 2020a); 

this is the main and most recent SOC mapping initia-

tive existing in the region with which we can compare 

the results obtained herein. Another comparison with 

actual SOC mapping, shows that the SOC mean value 

obtained in the present study is lower than that of 

128.80 Mg C ha−1 reported in SoilGrids – global 

gridded soil information; this is a system for digital 

soil mapping based on a global compilation of soil 

Table 7. Descriptive statistics of soil organic carbon (Mg 
C ha−1) by forest type using different models.

Model A: Multispectral remote sensing variables + topographic 
variables + climatic variables

Forest type Mean Max Min SD Total (Mg C)
% of 
SOC

Mangrove 
forest

131.87 193.09 63.95 25.88 3,451,749 2.4%

Dry forest 120.77 185.90 54.32 19.36 44,909,164 31.2%
Broadleaf 
forest

100.13 180.39 45.00 22.86 75,065,227 52.1%

Pine forest 89.06 167.88 44.76 19.29 20,625,691 14.3%
Total 144,051,831 100.0%

Model B: Topographic variables + climatic variables
Forest type Mean Max Min SD Total (Mg 

C)
% of 
SOC

Mangrove 
forest

129.42 201.51 64.75 18.04 3,387,413 2.3%

Dry forest 126.95 193.30 67.07 15.28 47,208,022 32.6%
Broadleaf 
forest

99.98 191.38 45.61 23.86 74,947,851 51.7%

Pine forest 83.73 171.13 45.63 14.62 19,392,685 13.4%
Total 144,935,971 100.0%

Model C: Multispectral remote sensing variables
Forest type Mean Max Min SD Total (Mg 

C)
% of 
SOC

Mangrove 
forest

130.86 199.48 48.58 33.62 3,277,858 2.4%

Dry forest 111.82 199.54 44.72 24.68 39,552,568 29.3%
Broadleaf 
forest

102.26 196.56 41.58 24.84 70,913,089 52.6%

Pine forest 94.72 189.15 41.99 22.87 21,150,587 15.7%
Total 134,894,102 100.0%

Min: minimum; Max: maximum; SD: standard deviation.
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profile data (WoSIS) and environmental layers, which 

uses state-of-the-art ML methods to map SOC con-

tents at a depth of 0–15 cm and 250 m resolution 

(Hengl et al., 2017). We believe that, due to the source 

of the data, depth of the soil sample, spatial resolution, 

scale of the map and the technique used to predict 

SOC contents, our results are slightly different from 

the results reported by these two global initiatives for 

the Dominican Republic. Figure 11 shows 

a comparative analysis of the three maps described.

Other reports on SOC in Central America are 

found in El Salvador and Costa Rica, where soil 

C was measured at 0–20 cm and 0–30 cm depths, 

respectively. Both measurements were part of the 

report of the National Multipurpose Forest 

Inventory, which was built to quantify the SOC stocks 

of those countries in order to report Forest Reference 

Emission Levels (FREL/REDD+) to the UNFCCC. 

However, geographically explicit maps of SOC stocks 

were not developed. In El Salvador, the mean SOC 

value in soils covered by forests was 137.45 Mg C ha−1 

at 0–20 cm depth (García & MARN, 2018), and Costa 

Rica, the mean value was 108.81 Mg C ha−1 at 0–30 cm 

depth (Emanuelli et al., 2015); both reports are close to 

those obtained in our study (110.35 Mg C ha−1). As 

mentioned above, these are the most recent reports for 

the region, and they provide evidence of the potential 

that our methodology has as it can be replicated in 

other countries in the future, and thus contribute to 

SOC mapping at the regional and global levels.

Conclusions

The present study developed and applied 

a methodology for SOC mapping in forest lands, 

using geospatial datasets available in the GEE plat-

form. This approach opens new possibilities for apply-

ing ML techniques that will allow countries to develop 

robust, transparent, consistent, and replicable systems 

for measuring and monitoring C in soils. In our study, 

Figure 11. Comparative map of soil organic carbon (Mg C ha−1) obtained with Model A versus Global Soil Organic Carbon Map 
(GSOCmap V1.5) and SoilGrid map 2.0. A1). Model A included all predictive covariates (Multispectral remote sensing variables + 
topographic variables + climatic variables); A2) zoomed-in image to SOC map derived from Model A. B1). Global Soil Organic Carbon 
Map (GSOCmap V1.5); B2) zoomed-in image to GSOCmap V1.5. C1). SoilGrids map V2.0); C2) zoomed-in image to SoilGrids map V2.0.
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we found a better coefficient of determination in 

Model A (topographic, climatic, and Landsat 8 OLI 

imagery datasets), and determined that the SOC con-

tent is mostly related to slope, temperature, and 

NDVI.

This study shows that freely accessible multispec-

tral optical imagery available in the GEE platform, 

such as Landsat 8 OLI, can by itself estimate SOC 

with adequate accuracy in the tropical forests of the 

Dominican Republic. Adding climatic and topo-

graphic covariates improved the model, but not 

significantly. The results obtained allow indicating 

that multispectral images are a good tool for SOC 

digital mapping at 0–15 cm depth.

ML helps simplify model adjustments. This is a great 

advantage because ML allows mapping SOC content 

using many predictive variables of climatic, topo-

graphic, or vegetation type with minimum human 

interaction; however, using soil samples distributed 

and stratified by forest type was crucial to improve 

model prediction of SOC content with an R2 of 83%

We found that the GEE platform has excellent poten-

tial in “wall-to-wall” SOC mapping in forest lands. 

Further research is required on the use of these tools 

for SOC mapping in different land uses (e.g., agricultural 

and livestock soils), different ecosystems beyond the 

tropics, and at further depths. We can conclude that 

the methodology developed may encourage new research 

that favors the fulfillment of the Pillar 4 Implementation 

Plan towards a Global Soil Information System within 

the framework of the Global Soil Alliance, and especially 

the support of Indicator 15.3.1 of the Objectives of 

Sustainable Development.

Future research is needed to evaluate; i) new spatial 

datasets available such as SoilGrid database, Sentinel-1 

Synthetic Aperture Radar (SAR) data, and other satel-

lite images like MODIS, Sentinel – 2 MultiSpectral 

Instrument (MSI), or Planet. ii) other algorithms 

such as deep learning (neural network), iii) perform 

hyperparameter estimation and optimization of the 

RF model to ensure maximum model accuracy, iv) 

increase the number of SOC stock samples to improve 

model performance, and v) assessing the land use and 

land cover change effect on soil organic carbon from 

landscape to national scale are some outlooks for 

future studies.
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