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1. INTRODUCTION  

This report outlines the process of estimating the economic damages of climate change for the 

Dominican Republic, with these damage estimates subsequently informing a Climate Change 

Development Report (CCDR) for the Dominican Republic. The development of a CCDR 

provides an opportunity to better understand the benefits and costs of climate action and cross-

sectoral policy priorities to manage climate risks effectively.  

Within the activity documented in this report, climate projections are run through biophysical 

and economic models to assess the country’s vulnerability to climate change under a no-action 

scenario, and how adaptation investments can enhance resilience. This is done by first selecting 

a representative set of climate scenarios, used to assess the macroeconomic effects of climate 

change. Macroeconomic shocks arising from relevant <channels of impact= under climate 
change are then explored, with these shocks serving as input for a country-specific 

macroeconomic model as well as additional modeling to estimate the poverty impacts of climate 

change. Finally, the potential benefits of different adaptation options to reduce the impacts of 

climate change are assessed. 

With this section having provided an introduction to the project, Section 2 goes on to provide 

country-specific geographic, climatological and socio-economic background. Section 3 provides 

an overview of the analytical approach used to estimate economic damages from climate change. 

Section 4 presents results for each impact channel assessed and Section 5 presents a summary of 

the key findings as well as conclusions. Appendices A and B present details on the 

methodologies used for the development of climate scenarios and impact channels, respectively. 

Appendix C documents the data sources used to conduct the analysis.  
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2. COUNTRY OVERVIEW  

This section provides a description of the geography and historical climatology of the 

Dominican Republic, as well as an overview of the country’s socioeconomic context. This 

background information was used to inform the development of both the analytical approach and 

key assumptions for estimating climate change damages in the country.  

2.1  GEOGRAPHY AND CLIMATE  

The Dominican Republic, located in the Caribbean Region, occupies the eastern two-thirds of 

Hispaniola. Its administrative capital is Santo Domingo, located on the southeast coast of the 

country (Figure 1). It is bounded by the Atlantic Ocean to the north, the Caribbean Sea to the 

south, and Haiti to the west.  

FIGURE 1.  COUNTRY MAP  

 
Source: WorldAtlas (2021) 

The country consists of five natural regions: (1-3) tropical moist broadleaf forests, tropical dry 

broadleaf forests, and tropical coniferous forests among the peaks of the country’s mountains; 
(4) flooded grasslands to the southwest and nestled within the valleys of the mountains; and (5) 
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mangrove swamps lining the coastal areas. The main rivers are the Yaque del Norte, which 

flows northwestward, and the Camu-Yuna, which flows eastward (Wiarda and González 2023).   

Figure 2 shows the country’s Köppen-Geiger climate classification, which consists primarily of 

tropical monsoon (Am), rainforest (Af), and savanna climates (Aw). These three regions are 

characterized by high temperatures. While the tropical rainforest climate presents high 

precipitation year-round, tropical monsoon and tropical savanna climates have distinct wet and 

dry seasons. In the center of the country is a temperate oceanic climate (Cfb), which has mild, 

wet winters, and cool, moist summers.  

FIGURE 2.  KÖPPEN-GEIGER CLIMATE CLASSIFICATION  MAP, 1991-2020  

 

 
Source: World Bank Climate Change Knowledge Portal 

The Dominican Republic has two seasons: the wet season (May to November) and the dry 

(December to April). Monthly average temperatures between 1991 and 2020 ranged between 

22.5˚C in January and 26.1˚C in August. Overall, temperature varies little spatially, with the 

center of the country around 5˚C cooler than the warmest portion of the country. Precipitation is 

more variable, with areas in the northwest receiving over 700 mm less precipitation annually 

than the middle of the country. Mean monthly rainfall in the Dominican Republic ranges 

between 63 mm in March and 196 mm in May (World Bank 2021a). Figure 3 shows the spatial 

variability of mean annual temperature and precipitation in the country, and Figure 4 shows the 

monthly variability of the same variables. Figure 3 shows the spatial variability of mean annual 

temperature and precipitation across the country, and Figure 4 shows the monthly variability of 

the same variables.  
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FIGURE 3.  MEAN TEMPERATURE AND PRECIPITATION  BY 1/2 DEGREE GRID  CELL, 1995-2020  

Precipi tat ion :       

 

Temperatu re:  

 
Source: World Bank Climate Change Knowledge Portal 

FIGURE 4.  MONTHLY MEAN TEMPERATURE AND PRECIPITATION , 1991-2020  

 
Source: World Bank Climate Change Knowledge Portal 
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2.2  SOCIOECONOMIC CONTEXT  

The Dominican Republic had a population of 11 million people in 2020. The country’s 
population grew by 14 percent during the last 10 years and is expected to continue growing at a 

slower rate going forward, potentially reaching about 13.2 million people by 2050 (United 

Nations 2022). The population is mainly concentrated in urban areas (see Figure 5). The 

population is currently over 80 percent urban, and urbanization is projected to continue. Santo 

Domingo has 3.5 million people in the metropolitan area or 31.8 percent of the total country 

population. 

FIGURE 5.  POPULATION DISTRIBUTION BY ½ DEGREE GRID  CELL,  2020  

 
Source: United Nations Population Prospects 

The Dominican Republic’s gross domestic product (GDP) in 2021 was 94.2 billion USD. The 

country is classified as an upper-middle income country, with a per capita income of about 

$18,600 in 2021 (in purchasing power parity terms, in constant 2017 international dollars). As 

seen in Figure 6, GDP per capita has grown steadily, overcoming the average for Latin America 

and Caribbean countries in 2016 (World Bank 2021b). 

In 2021, 5.4 percent of the country’s GDP came from services, while the industry and 

agriculture sectors contributed 32.7 and 5.7 percent respectively. Now, tourism has become one 

of the Dominican Republic’s more important sources of foreign exchange and the country is one 

of the most popular tourist destinations in the Caribbean. In 2021, 0.3 percent of the population 

was below the international poverty line (United Nations 2021). This is a decrease from 21 

percent in 2019.  
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FIGURE 6.  GDP PER CAPITA (PURCHASING POWER PARITY,  IN  CONSTANT 2017 THOUSAND 

INTERNATIONAL DOLLARS)  

 
Source: World Bank DataBank 
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3. METHODOLOGICAL OVERVIEW  

As introduced above, this study aims to estimate economic damages from climate change to the 

Dominican Republic’s economy, with these estimates to be used in the development of the 

CCDR. The analysis is built around different <impact channels= through which climate change 

will result in shocks to the country’s macroeconomy. This study considers the following 

different types of shocks, namely  

(1) shocks to human capital, including from heat stress on labor, impacts to human health, 

and water, sanitation, and hygiene  

(2) shocks to water and agriculture, including changes in water supply and demand, crop 

production, erosion, and hydropower 

(3) shocks to infrastructure and services, including inland flooding, tropical cyclones, 

sea-level rise and storm surge, and tourism 

This section presents the overarching analytical framework used to model impact channels and 

their linkages to the macroeconomic and poverty model(s), the climate scenarios considered, and 

the development policy and adaptation scenarios evaluated. Appendix A presents further detail 

on the methods used to process climate data and select scenarios, while Appendix B presents 

detailed methodological information for each impact channel. Appendix C documents the 

various sources of data used in the analysis.   

3.1  ANALYTICAL APPROACH  

Within this study’s analytical framework, developing impact channels involves four stages (see 

Figure 7):  

(1) obtaining gridded historical and projected climate data for a set of climate scenarios;  

(2) selecting, tailoring, and/or developing biophysical models that convert changes in 

climate data into biophysical shocks for each of the impact channels evaluated for the 

country;  

(3) aggregating grid-level biophysical shocks to national and/or sectoral scales using high-

resolution geospatial data; and  

(4) producing shocks to be fed into the country’s macroeconomic and poverty model(s).  

Results are aggregated either to national scale inputs (e.g., capital or labor) or to economic 

sectors (e.g., agriculture) to match the macroeconomic model’s resolution, or are provided at 

higher resolution for use in a poverty model.  
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FIGURE 7.  IMPACT CHANNEL MODELING APPROACH  

  

For this particular analysis, we consider eleven channels of impact. Table 1 provides a high-level 

description of each channel broken down by the categories introduced above (i.e., human capital, 

water and agriculture, and infrastructure and services). The shocks caused by climate change 

through each impact channel are calculated based on changes in climate variables (e.g., monthly 

precipitation or daily maximum temperature) for the 30-year period from 2021 to 2050 (i.e., the 

period covered in the CCDR), relative to a climate baseline from 1995 to 2020. These shocks are 

then used as input to the existing country's macroeconomic and poverty model(s). 

TABLE 1 .  OVERVIEW OF IMPACT CHANNELS  EVALUATED   

CHANNEL OF IMPACT DESCRIPTION OF HOW CLIMATE CHANGE TRANSLATES TO DAMAGES 

HUMAN CAPITAL 

1 Labor heat stress 
Shock to labor productivity from daily heat stress to both indoor 
and outdoor workers. Considers occupation-specific work ability 
curves from the International Labor Organization.  

2 Human health 
Shock to labor supply from changes in the incidence and mortality 
of vector-borne (malaria and dengue), water-borne (i.e., 
diarrheal), and temperature-related diseases.  

3 
Water, sanitation, 
and hygiene 

Shock to labor supply from changes in diarrheal incidence and 
mortality due to investments in improved water supply and 
sanitation coverage.  

4 
Water supply and 
demand 

Shock to water-dependent sector9s productivity. Uses a water-
agriculture nexus model to evaluate unmet demand 
s and replacement costs of water supply.  

5 Crop production 
Shock to crop revenues through changes in yields. Based on the 
Food and Agriculture Organization9s crop-specific yield response 
functions to water availability and heat stress. 

6 Erosion 
Shock to crops from topsoil erosion and flooding due to vegetation 
conditions. Impacts on erosivity from changes in rainfall are based 
on the Revised Universal Soil Loss Equation model.  
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CHANNEL OF IMPACT DESCRIPTION OF HOW CLIMATE CHANGE TRANSLATES TO DAMAGES 

7 Hydropower 
Shock to energy generation resulting from changes in river runoff. 
Utilizes a water systems model. 

INFRASTRUCTURE AND SERVICES 

8 Inland flooding 

Shock to capital from changes in the recurrence of peak 
precipitation events that result in fluvial (riverine) flooding. 
Models streamflows and floodplains, with damages estimated using 
depth-damage curves. 

9 Tropical cyclones 
Shock to capital from changes in tropical storm recurrence 
intervals, evaluated by assessing the impact of thousands of 
synthetically generated tropical storm tracks.  

10 
Sea-level rise and 
storm surge 

Shock to coastal capital from changes in mean sea level and storm 
surge, using a bathtub approach.  

11 Tourism 
Shock to tourism sector revenues due to changes in climate 
variables, which produce changes in tourism potential.  

 

As summarized in Table 1, each individual impact channel relies on stylized biophysical models 

that are capable of accepting climate information and projections, and simulating changes in 

biophysical (e.g., streamflow or infrastructure conditions) and/or socioeconomic (e.g., labor 

supply hours) variables under these altered climatic conditions. The biophysical models are 

customized to the country context by using country-specific inputs, obtaining key assumptions 

from country experts and available literature, and calibrating outputs using local data. Where 

locally collected data are not available, we rely on global sources. Alternative scenarios that 

consider different possible policy decisions and investments (for the purpose of climate change 

adaptation or general development of the country) can also be included in the modeling by 

modifying inputs and assumptions. Detailed descriptions of the impact channel methodologies, 

including the models used, resolution of the analysis, and key assumptions and limitations are 

presented in Appendix B, while Appendix C documents the specific data sources utilized in the 

impact channel analysis.  

The output variables of these biophysical models are then translated into inputs to a Computable 

General Equilibrium model. These models are used to simulate the effects of policy changes and 

external shocks on the economy as a whole. Computable General Equilibrium models 

incorporate data on the interactions between different sectors and agents in the economy, and 

can be used to analyze the distributional impacts of policy changes on different groups. The 

economy is then divided into different sectors, such as agriculture, manufacturing, and services. 

These sectors are further divided into sub-sectors, depending on the level of detail required for 

the analysis. The Social Accounting Matrix is an important component of the model, used to 

represent the structure of the economy being studied and containing information on the flows of 

goods and services between different sectors, households, and the government. Typically, the 

Social Accounting Matrix would consider multiple sectors (e.g., agriculture, industry, services) 

as well as labor and capital as factors of production. These variables are shocked by results from 

the biophysical models. 
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In addition to macroeconomic metrics, these models can also generate poverty-related outputs by 

estimating changes in household income, consumption, employment, and welfare measures. 

These measures can then be used to assess the impact of climate change on poverty indicators as 

well as on different policies seeking to address poverty and inequality. The calculation of 

poverty shocks follows the same approach as the macroeconomic shock, i.e., the same 

biophysical models, inputs, and assumptions, except that results are provided at subnational 

resolutions to match available poverty microdata. IEc is working with the Poverty team to use 

available household survey data to improve the accuracy and resolution of the parameters in the 

biophysical models, and to calculate household-level shocks derived from the impact 

channels. Inputs for poverty analyses currently include the following impact channels: labor heat 

stress, human health, crop production, and livestock. 

3.2  POLICY AND ADAPTATION  SCENARIOS  

The biophysical modeling conducted for each impact channel considers policy scenarios defined 

for the country. In general, these scenarios consider (1) a business-as-usual trajectory, in 

which the country continues its current growth and/or development trends and (2) an 

aspirational development trajectory in which more ambitious development is pursued as 

compared to the recent past. For example, a business-as-usual trajectory may consider a median 

projection of population or a constant coverage of clean water supply, while an aspirational 

growth trajectory may consider a reduced fertility scenario or a constant increase in clean water 

access. These scenarios are then incorporated into each impact channel by modifying 

assumptions on socioeconomic- and development-related variables.  

Modeling of the relevant impact channels also considers proactive adaptation interventions 

that seek to reduce the negative effects of climate change experienced through a particular 

channel. Generally, greater levels of adaptation can achieve larger reductions in the cost of 

climate change, but with decreasing marginal benefits for incremental expenses in adaptation 

(see the left panel in Figure 8 below, taken from the Intergovernmental Panel on Climate 

Change’s Economics of Adaptation). In practice, full adaptation to the impacts of climate change 

is not possible due to technological limitations and other implementation barriers, leaving 

unavoidable residual costs (as seen in the right panel of Figure 8). The adaptation scenarios 

considered in this study aim to strike a realistic balance between adaptation costs and residual 

impacts, where the marginal benefits of adaptation meet the marginal residual costs and overall 

benefit-cost ratios of the interventions are positive.  
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FIGURE 8.  REPRESENTATION OF ADAPTATION COSTS AND RESIDUAL COSTS OF CLIMATE CHANGE  

 
Source: The Intergovernmental Panel on Climate Change (Chambwera et al. 2014) 

The modeled adaptation interventions for each impact channel were selected based on modeling 

feasibility, applicability to the specific country context, and the degree of climate change 

impacts. Adaptation costs are based on unit cost estimates obtained from international and, 

where available, local sources. Furthermore, the timing and magnitude of adaptation 

interventions were determined in coordination with the World Bank team and, if available, 

informed by existing sectoral and/or government plans in order to ensure fiscal realism of the 

investments (i.e., investment amounts and timings are realistic considering the country’s 
investment capacity). Shocks were then generated for all policy scenarios, for both a no-action 

baseline as well as for a proactive adaptation case. The selected adaptation measures and 

modeling assumptions are detailed in the corresponding impact channel sections provided in 

Chapter 4.  

3.3  CLIMATE SCENARIOS  

To address climate uncertainty in the analysis, a total of ten climate scenarios were selected from 

among a larger set of available scenarios. The inclusion of multiple, carefully selected climate 

scenarios is critical to account for uncertainty in both future greenhouse gas emissions 

trajectories as well as uncertainty across different climate model projections. 

Available climate scenarios were first obtained from the World Bank’s Climate Change 
Knowledge Portal for 29 General Circulation Models (GCMs) from the Coupled Model 

Intercomparison Project 6 (CMIP6) suite of model outputs. Each GCM has up to five 

combinations of Shared Socioeconomic Pathway (SSP) and Representative Concentration 

Pathway (RCP) emissions scenario runs available. For each GCM-SSP combination, a modeled 

history from 1995 to 2014 and projections from 2015 to 2100 were available, for monthly mean 
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temperature and precipitation at a 1x1 degree grid resolution. Given that GCM outputs are 

biased relative to observed climate conditions, bias-correction and spatial disaggregation were 

conducted, before then interpolating monthly variables to a daily timestep. Appendix A provides 

further details on the climate inputs utilized as well as the bias-correction, spatial disaggregation 

and daily interpolation processes.  

Figure 9 shows the projected mean temperature (left panel) and precipitation (right panel) in the 

country through 2100 across a range of SSP-RCP combinations. The bold lines are averages 

across GCM projections for each SSP, and the shaded zones surrounding those lines are the full 

range of GCM projections within an SSP. As can be seen, while GCM ensemble averages for 

precipitation (the bold lines in the right panel) do not change significantly relative to baseline 

precipitation, the precipitation projected across the full range of GCMs (the shaded zones in the 

right panel) varies widely. This emphasizes the importance of selecting a set of climate scenarios 

that captures a wide range of possible future conditions.  

FIGURE 9.  PROJECTED CLIMATE VARIABLES  ACROSS A RANGE OF SSP-RCPs  

     
Source: World Bank Climate Change Knowledge Portal 

Following World Bank guidance titled Global scenarios for CCDR analyses (February 3, 2022), 

two of the ten scenarios included in this project were selected to allow for comparisons across 

emissions scenarios - these are referred to as mitigation scenarios. The guidance specifies the 

following two mitigation scenarios: 

• Ensemble average of SSP3-7.0 GCMs: Pessimistic Case. Scenario in which warming 

reaches 4°C by 2100, due to lax climate policies or a reduction in ecosystems and 

oceans’ ability to capture carbon.  

• Ensemble average of SSP1-1.9 GCMs: Optimistic Case. Represents reductions in 

greenhouse gas emissions in line with limited 1.5°C of warming by 2100. 

In addition to enabling comparison across emissions scenarios, climate scenarios should also be 

selected in such a way as to capture the broadest range of climate change effects across GCMs. 
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In doing so, the vulnerability of the economy and the performance of adaptation options under 

possible wet vs. dry and hot vs. warm GCM outcomes can be assessed. We selected the 

following set of eight scenarios, based on changes from the baseline climate as compared to the 

period between 2051 and 2060: 

• Dry/hot scenarios: Three scenarios around the 10th percentile of mean precipitation 

changes (i.e., dry) and the 90th percentile in mean temperature changes (i.e. hot), across 

SSP2-4.5 and SSP3-7.0 GCMs, as well as a mean across those three scenarios.  

• Wet/warm scenarios: Three scenarios around the 90th percentile of mean precipitation 

changes (i.e., wet) and the 10th percentile in mean temperature changes (i.e. warm), 

across SSP2-4.5 and SSP3-7.0 GCMs, as well as a mean across those three scenarios.  

The selected scenarios are summarized in Table 2, with further detail provided in Appendix A.  

TABLE 2 .  SELECTED CLIMATE SCENARIOS  

TYPE SCENARIO 

Mitigation SSP1-1.9 MEAN 

SSP3-7.0 mean 

Dry / hot future SSP2-4.5 TAIESM1 

SSP3-7.0 KACE-1-0-G 

SSP3-7.0 IPSL-CM6A-IR 

Dry/hot mean 

Wet / warm future SSP2-4.5 CMCC-CM2-SR5 

SSP2-4.5 NORESM2-LM 

SSP3-7.0 CMCC-CM2-SR5 

Wet/warm mean 

 

These same climate scenarios are utilized across all impact channels with the exception of the 

channels looking at inland flooding, tropical cyclones and sea-level rise and storm surge. The 

inland flooding analysis relies on data for the peak 1-day precipitation magnitude and frequency, 

rather than mean precipitation volumes. Since these data are only available for SSP ensemble 

aggregates in the Climate Change Knowledge Portal, we do not consider dry/hot or wet/warm 

futures and instead perform the analysis for SSP1-1.9 and 3-7.0 median (50th percentile) results.   

In addition, for the impact channels that examine tropical cyclones and, sea-level rise and storm 

surge, our analysis does not utilize raw climate data from the Climate Change Knowledge 

Portal. Rather, we rely on processed variables resulting from changes in global temperatures and 

other effects on atmospheric and oceanic phenomena (i.e., changes in global and regional mean 

sea levels and cyclone tracks, frequency, magnitude, and duration). While these estimates are 

based on the same underlying data from the CMIP6 suite of model outputs, projections are not 

available for each individual GCM, hence we utilize median (50th percentile) results for SSP1-

1.9 and 3-7.0.  
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4. IMPACT CHANNEL RESULTS  

This section presents the results of the impact channel assessment by which climate change 

damages are estimated. For each impact channel considered, we first provide a brief overview 

table that summarizes key findings for this channel. This is followed by a description of how the 

channel was modeled, with further methodological detail available in Appendix B and data 

sources described in Appendix C. Finally, the results are presented, looking first at climate 

change effects and then at the resilience offered by different possible adaptation actions.  

4.1  HUMAN CAPITAL  

Climate change can negatively impact human capital in a variety of ways. Increased heat stress 

to workers can reduce labor productivity, while the increased incidence of infectious diseases 

can reduce labor supply. In addition, a lack of investments in activities like clean cooking 

services or water, sanitation, and hygiene can further exacerbate these climate-driven impacts on 

human capital. We use a labor supply model to calculate the total labor hours in the country 

under different future conditions, with the estimated impacts to the Dominican Republic’s 
human capital due to climate change presented below.  

4.1.1  LABOR HEAT STRESS  

SUMMARY 

SUMMARY Our analysis estimates the impact of climate change on labor 

productivity across the agriculture, industry, and services sectors. We 

estimate that by 2050 increasing temperatures may result in a labor 

supply shock ranging from around -3.5 to -9 percent. 

ESTIMATED CLIMATE 

CHANGE IMPACTS BY 

2041-2050 

From 2041-2050, labor productivity shocks are expected to be highest 

for the agriculture sector, followed by the industry and services 

sectors. The Wet/Warm mean scenario is estimated to result in a -7 

percent, -5 percent, and -4 percent impact to the agriculture, industry, 

and services sectors respectively. Overall, shocks from the Dry/Hot 

mean scenario are higher, with impacts estimated at around -13 

percent, -9 percent, and -8 percent for the agriculture, industry, and 

service sectors, respectively. 

 

Overview of Impact Channel 

Climate change can impact labor supply by increasing workday temperatures and decreasing the 

number of hours an individual can perform work. To estimate labor heat stress impacts due to 

climate change, we calculate workday wet bulb globe temperatures as a measure of heat stress to 

derive labor productivity loss curves across three levels of physical activity. Our quantification 

of wet bulb globe temperatures assumes that relative humidity remains constant into the future 
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and that all occupations are performed evenly throughout the year. A detailed description of this 

method and its limitations are presented in Appendix B. 

For each sector, the labor productivity shocks are based on the relative labor hours by 

occupation within each industry, and the extent to which these occupations are exposed to 

outdoor work. Within the agriculture sector, most labor hours are completed by skilled 

agricultural, forestry, and fishery workers, while a small portion of labor hours are conducted by 

elementary occupations (see Figure 10). Approximately 75 to 90 percent of labor hours in the 

agriculture sector occur in outdoor conditions (see Figure 11). Within the industry sector, labor 

hours are mainly divided among craft and trade workers, elementary occupations, services and 

sale workers, and technical professionals (see Figure 10). Exposure to outdoor work ranges from 

10 to 90 percent of working hours (see Figure 11). Labor hours within the services sector are the 

most diverse of the sectors considered, with a range of occupations performed. The majority of 

labor hours in the services sector include service and sales workers elementary occupations (see 

Figure 10), who conduct around 25 and 90 percent of working hours outside, respectively (see 

Figure 11). 

FIGURE 10.  LABOR HOURS BY OCCUPATION  
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FIGURE 11.   SHARE OF INDOOR OUTDOOR LABOR  

 

While both indoor and outdoor workers can be impacted by heat stress, outdoor workers are 

generally exposed to higher wet bulb globe temperatures at full sun exposure. In contrast, a 

portion of indoor workers are assumed to perform work in air-conditioned environments. 

Overall, the effect of heat stress intensifies for labor types that are outdoors and conducting more 

intense physical work.  

The total impacts to labor supply are estimated for agriculture, service, and industry workers 

using available data on labor supply, relative heat and air-conditioning exposure, and labor force 

distribution, with the specific data sources detailed in Appendix C.  

Results: Climate Change Effects 

Results presented here describe labor productivity shocks relative to a baseline period (1995-

2020) by sector until 2050 (Figure 12 and Figure 14).  

In the baseline period, we observe a mean maximum workday wet bulb globe temperature that 

ranges from about 27°C to 36°C. This corresponds to a heat stress factor of 0.90, 0.88, and 0.80 

for indoor workers performing low, medium, and high physical activity occupations 

respectively, on average. The heat stress factor is a multiplier that captures the percentage of an 

hour that laborers can perform work at a certain temperature. Low-activity occupations are 

generally linked to the services sector, medium to manufacturing (industry), and high to 

agriculture and construction (industry). For outdoor workers, mean maximum workday wet bulb 

globe temperature corresponds to a heat stress factor of 0.87, 0.75, for low, medium, and high 

physical occupations respectively, on average. 

Based on the changes in labor productivity relative to the baseline, the overall labor productivity 

(i.e., the three sectors aggregated based on their share of labor supply) decreases over time 

(Figure 12). Shocks across different climate scenarios are projected to range from around -2 

percent to -4 percent in 2030. When considering individual GCMs (i.e., the grey-shaded range 

shown in Figure 12), labor productivity shocks range from about 1 percent to -5.5 percent by 

2030. Following 2035, the spread between the different scenarios increases, with shocks most 

severe under the Dry/Hot mean, followed by SSP3-7.0, the Wet/Warm mean, and SSP1-1.9 
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scenarios. Across GCMs, labor productivity shocks range from around -6 percent to -9 percent 

by 2050.  

FIGURE 12.  LABOR PRODUCTIVITY  SHOCKS, 3 -YEAR MOVING AVERAGE   

  

Figure 13 illustrates agriculture labor productivity impacts by region under the Dry/Hot and 

Wet/Warm mean scenarios from 2041 through 2050. Overall, we anticipate the Dry/Hot mean 

scenario will have harsher impacts by mid-century, with productivity shocks as great as -17 

percent in some provinces. Under both scenarios, effects are most severe in north and southeast 

provinces. 

FIGURE 13.   AGRICULTURE LABOR PRODUCTIVITY IMPACT (% )  BY PROVINCE,  2041-2050  

 

Wet/Warm mean  
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Across macroeconomic sectors, agriculture is expected to experience the highest labor 

productivity shock by 2041-2050, followed by industry and services sectors respectively (Figure 

14).  

FIGURE 14.  LABOR PRODUCTIVITY SHOCK  2041-2050  

 

Adaptation 

With the modeled effects of climate change on labor productivity documented above, this 

section now looks at the effect of investing in adaptation measures. As introduced in Section 3.2, 

we consider a proactive adaptation scenario and compare it to a no-action baseline. This no-

action baseline is a fairly pessimistic scenario in that it does not take into account the fact that 

the country is growing and developing, and that some adaptation may take place as part of this 

growth.  

When it comes to reducing the labor productivity shocks of climate change, there are a variety of 

possible adaptation interventions that could be pursued. These include changing the time of day 

that outdoor physical labor is conducted (e.g., more work during the early morning and evening), 

investing in active or passive cooling technologies (e.g., improved ventilation, fans, or air-

conditioning), or minimizing the urban heat island effect (e.g., through green roofs, tree-planting 

etc.). For this channel, the specific adaptation intervention evaluated is an increase in air-

conditioning. Table 3 shows details of the adaptation intervention for three different adaptation 

scenarios considered.  

Wet/Warm mean  



 

  

21 
 

TABLE 3 .  ADAPTATION SCENARIOS AND INTERVENTIONS EVALUATED  

ADAPTATION INTERVENTION 
SCENARIO 

NO-ACTION BASELINE LOW ADAPTATION HIGH ADAPTATION 

Increase in air-conditioning 

for indoor workers 

No change in air-

conditioning 

coverage by 2050 

(30% coverage) 

Increasing air 

conditioning 

coverage by +20% by 

2050 (reaching 50% 

coverage) 

Increasing air 

conditioning 

coverage by +30% by 

2050 (reaching 60% 

coverage) 

 

Figure 15 shows the estimated labor productivity shocks due to climate change for the period 

between 2041 to 2050 relative to a baseline period of 1995 to 2020. The panel on the left shows 

the results for the no-action baseline case, assuming air-conditioning coverage is 30 percent at 

the outset; the panel in the middle shows results for the low adaptation scenario which assumes 

air-conditioning coverage increases to 50 percent by 2050; and the panel on the right shows 

results for the high adaptation scenario which assumes air-conditioning coverage increases to 60 

percent by 2050. 

Across macroeconomic sectors, agriculture is consistently expected to experience the highest 

labor productivity shocks in the period between 2041 and 2050, across all adaptation scenarios 

considered. Adaptation investments in air-conditioning have the greatest impact on the industrial 

sector, followed closely by the services sector. Labor productivity in industry is expected to 

experience shocks of between 0.5 and -2.8 percent under the high adaptation case compared to 

between -5.1 and -9.1 percent under the no-action baseline. While increased air-conditioning 

does reduce the shock experienced by the agriculture sector, the magnitude of this positive effect 

is much smaller than for industry and services, likely because most agricultural activities are 

conducted outdoors where air-conditioning is not possible and thus offers limited benefit.  
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FIGURE 15.   LABOR PRODUCTIVITY SHOCK UNDER DIFFERENT ADAPTATION SCENARIOS,  2041 -2050  

 

Figure 16 shows the labor productivity shock between 2020 and 2050 under current air-

conditioning coverage (left panel), an increase of 20 percent coverage (center panel), and an 

increase of 30 percent coverage (right panel). In all three scenarios, shocks improve until around 

2025 under the Wet/Warm mean scenario, after which shocks grow through mid-century under 

the no-action baseline and low adaptation scenario. Under the high adaptation scenario, shocks 

improve slightly during the 2040s before declining again by mid-century. Under the Dry/Hot 

mean scenario, shocks in the no-action baseline and low adaptation scenarios grow across the 

study period and stay at a similar level in the high adaptation scenario. While shocks under the 

Wet/Warm and Dry/Hot mean scenarios are negative for the no-action baseline and low 

adaptation scenario, under the high adaptation scenario, we expect small positive shocks in the 

2040s. Overall, under the Wet/Warm and Dry/Hot mean scenarios, a 30 percent increase in air-

conditioning coverage results in -1 and -2 percent shock in 2050, as compared to a -7.5 and -8.5 

percent under the no-action baseline. 
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FIGURE 16.   LABOR PRODUCTIVITY SHOCK UNDER DIFFERENT ADAPTATION SCENARIOS,  3-YEAR 

MOVING AVERAGE  

 
 

Summary and discussion 

Overall, the analysis suggests that climate change will result in losses in labor productivity in the 

Dominican Republic due to increases in daytime temperatures, particularly daily maximums. 

Impacts are expected across all sectors of the economy and for both indoor and outdoor workers. 

However, the effects on agricultural labor are higher because the sector has a higher proportion 

of outdoor workers and requires higher levels of physical labor. This sector is followed by 

industry, and then by services. Between 2041-2050, mean annual impacts can range between -7 

and -13 percent for agriculture, -5 and -9 percent for industry, and -4 and -8 percent for services. 

While the negative impacts are ubiquitous across the country, eastern and northern areas of the 

country are likely to experience higher impacts due to both higher current and projected 

temperatures. In contrast, western, higher-altitude regions will be less impacted.  

While air conditioning can effectively reduce the impact of climate change, the benefits of this 

measure are limited to the indoor workforce only. That said, increasing the share of indoor 

workers with access to air conditioning to about 60 percent would virtually eliminate the effect 

of climate change under a Wet/Warm future for industry and service workers, which have a 

higher proportion of indoor labor. However, for both agriculture and the remainder of the 

outdoor workforce, additional adaptation measures would need to be considered in order to 

reduce the negative impact of climate change.  
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4.1.2  HUMAN HEALTH  

SUMMARY 

SUMMARY Our analysis estimates the impact of climate change on labor supply 

as a result of the changing incidence of illnesses and deaths from 

vector-borne diseases, heat-related diseases, and waterborne 

infectious diseases. We estimate that by 2050, increasing 

temperatures may result in a labor supply shock ranging from around 

-0.028 to -0.055 percent. 

ESTIMATED CLIMATE 

CHANGE IMPACTS BY 

2041-2050 

From 2041-2050, labor supply shocks are expected to be highest from 

heat-related diseases, followed by water-borne and vector-borne 

diseases. The Wet/Warm mean scenario is estimated to result in a -

0.038 percent labor supply impact. Shocks from the Dry/Hot mean 

scenario are higher, with impacts estimated at around -0.048 percent 

in total. 

 

Overview of Impact Channel 

Climate change may impact human health through increased incidence of and deaths from 

vector-borne diseases such as malaria and dengue, heat-related diseases, and waterborne 

infectious diseases that cause acute diarrhea, which all influence the total labor supply. We 

apply different biophysical and statistical relationships between climate variables and the 

incidence of or transmissibility for each disease, with changes in disease incidence and death 

rates then used to estimate the number of hours of labor supply lost. A summary of the 

methodology used is presented below, with a more detailed description available in Appendix B. 

When considering vector-borne diseases, the same general methodology is applied to both 

malaria and dengue. These are both mosquito-borne diseases whose spread depends on the right 

environmental conditions occurring for the mosquitoes to live, breed and increase in number. 

These conditions are approximated from three climate variables, namely mean monthly 

temperatures, cumulative annual precipitation, and minimum annual winter temperature, and are 

used to calculate a suitability index ranging 0 (unsuitable) to 1 (suitable). The exposed 

population is then estimated, as a probability of the occurrence of the disease in the area, with 

the resulting deaths due to and cases of the disease calibrated using reported deaths and 

prevalence rates from official sources.  

Heat-related illnesses are modeled based on calculating excess mortality from daily maximum 

temperatures. The temperature3mortality relationship is assumed to be V-shaped (see Figure 17), 

and the temperature value at which mortality is lowest is defined as the optimum temperature 

(OT). For temperatures above the optimum threshold for a given location, excess heat-mortality 

is defined daily as a fraction of the average total non-injury-related deaths occurring that day, 

with the excess mortality calibrated to nationally reported statistics of non-injury heat-related 

mortality.  
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FIGURE 17.  V-SHAPED FUNCTION OF EXCESS MORTALITY DUE TO HIGH TEMPERATURES  

 
Source: World Health Organization 2014 

For waterborne diseases, we follow the modeling approach described by the World Health 

Organization (2014), which applies gridded estimates of average annual temperature anomalies 

to a statistical temperature3mortality risk relationship. The approach calculates the total 

estimated diarrheal deaths and cases in the future without climate change, and then estimates the 

climate change-attributable percent change.  

Finally, the changes in the incidence and death rates of the different types of diseases described 

above are then used to model the number of hours of labor supply lost. Additional deaths relative 

to the baseline and absenteeism from work due to people falling sick directly reduce the total 

labor available. Additionally, there is also an indirect effect from children getting sick and 

needing parental care for the duration of the disease. The total hours of labor lost for each 

disease are then calculated for the country for both historical periods as well as future 

projections. The specific data sources used to complete the analysis are detailed in Appendix C.  

Results: Climate Change Effects 

Results presented here describe labor supply shocks relative to a baseline period (1995-2020) as 

projected until 2050.  

Figure 18 shows the breakdown of the mortality and morbidity for the different diseases 

considered from 2015 to 2019. Of the four disease categories, only water-borne diseases and 

heat-related diseases contribute to non-injury-related deaths in the country. Their respective 

share of deaths is low, with 0.9 percent of the total non-injury deaths recorded in the Dominican 

Republic caused by water-borne diseases and 0.1 percent caused by heat-related diseases. The 

incidence of water-borne diseases and heat-related diseases are both low at 0.3 percent and 0.1 

percent respectively. 
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FIGURE 18.   BREAKDOWN OF DISEASE MORTALITY AND MORBIDITY FOR 201 5-2019   

 

Figure 16 shows how the mortality and morbidity of the different diseases are expected to 

change relative to the historic breakdown shown above when considering the impacts of climate 

change. Heat-related diseases are expected to be impacted the most, with increases in mortality 

and morbidity of more than 2,000 percent by 2050, as compared to 41 percent for waterborne 

diseases, 22 percent for dengue and 11 percent for malaria. Impacts from dengue, heat-related 

diseases, and water-borne diseases are all expected to grow as mid-century approaches. Impacts 

from malaria show a decreasing trend across the Dry/Hot mean scenario and specific GCMs.  

Malaria impacts relative to the baseline are greater under the Wet/Warm mean scenario than the 

Dry/Hot mean scenario. This occurs as temperatures in the Dry/Hot mean scenario exceed 

identified thresholds, thereby reducing malaria transmissibility. However, the Dry/Hot mean 

scenario is expected to result in greater impacts for heat-related illnesses, water-borne illnesses, 

and dengue, when compared to the Wet/Warm mean scenario.    
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FIGURE 19.  CHANGES IN DISEASE MORTAL ITY AND MORBIDITY DUE TO CLIMATE CHANGE COMPARED 

TO BASELINE    

 

Figure 20 shows the annual number of heat-related deaths in the country during the baseline 

period and under the Dry/Hot and Wet/Warm mean scenarios for the period from 2041 to 2050. 

During the baseline period, heat-related deaths are concentrated in central areas of the country, 

with heat-related mortality peaking at approximately 5 deaths annually. Overall, the prevalence 

of heat-related deaths is greatest under the Dry/Hot mean scenario, with most deaths occurring 

near Santo Domingo and in the north. In these areas, mortality ranges from approximately 2.5 to 

17.5 deaths annually. Under the Wet/Warm mean scenario, similar areas are expected to be 

affected, though estimated impacts are less severe.  

FIGURE 20.   PROJECTED ANNUAL HEAT RELATED DEATHS  

 

Based on the changes in labor supply due to disease mortality and morbidity relative to the 

baseline, the overall labor supply decreases over time, with the magnitude of the decrease being 

fairly small (Figure 21). By 2030, the Dry/Hot mean scenario is expected to result in the most 

severe shock, with a magnitude of -0.02 percent. Shocks from the Wet/Warm mean scenario are 

slightly less negative at -0.015 percent. When considering individual GCMs (i.e., the grey 

Wet/Warm mean  
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shaded range in Figure 21), labor supply shocks range from around -0.01 percent to -0.025 

percent in 2030. By mid-century, divergence between the four scenarios increases, with SSP1-

1.9 scenario resulting in the smallest shock followed by the Wet/Warm mean, SSP3-7.0 and the 

Dry/Hot mean scenarios. Across GCMs, labor supply shocks range from around -0.035 percent 

to -0.055 percent by 2050.  

 

FIGURE 21.   LABOR SUPPLY SHOCKS, 3 -YEAR MOVING AVERAGE   

 

Summary and discussion 

Climate change is likely to produce significant changes in the mortality and morbidity of vector-

borne, heat-related, and waterborne diseases in the Dominican Republic. The transmissibility of 

dengue and waterborne pathogens is expected to increase up to 22 and 41 percent by 2041-2050 

under the worst-case scenario, primarily from increases in mean temperatures. Dengue 

transmissibility is likely to expand to higher elevation areas as temperatures increase, where 

current mean temperatures cause sub-optimal levels of mosquito reproductive rates. For 

waterborne diseases, ubiquitous increases in mean temperature will result in overall higher 

incidence rates everywhere in the country. Heat-related diseases will experience the highest 

percent increase in incidence and death rates, caused by a combination of a current low baseline 

rates and a steep increase in daily peak temperatures. However, all things equal, the share of 

mortality and morbidity from these diseases will still remain a small fraction of the total country 

rates. Lastly, in contrast to the other three diseases modeled, malaria transmissibility is expected 

to reduce under most scenarios, as a result of temperatures surpassing the optimal level for 

mosquito reproduction. As such, a Dry/Hot mean scenario would result in the highest decrease 

in malaria incidence, compensating for part of the effects from the other diseases modeled.  

Wet/Warm mean  
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Overall, the resulting effect on labor supply is negative, and more significant under a Dry/Hot 

future by mid-century. However, while the changes in each specific disease are significant, the 

resulting macroeconomic shock to labor supply is small because of two reasons. First, these four 

diseases combined represent only about 1 percent of the total number of deaths in the Dominican 

Republic today and less than half a percent of the total incidence rate. Second, while death or 

illness can cause grave consequences at the individual or household levels, the proportion of 

adults that die or fall sick during a year is still a relatively low proportion of the total workforce. 

Hence, increases in mortality and morbidity rates are expected to result in limited impacts on 

labor supply.  

 

4.1.3  WATER,  SANITATION,  AND HYGIENE  

SUMMARY 

SUMMARY Our analysis estimates the impact of water, sanitation, and hygiene 

investment on the incidence of water-borne diseases and related 

mortality. We estimate that by 2050, water, sanitation, and hygiene 

investments under a business-as-usual and an aspirational scenario 

would result in a positive labor supply shock of approximately 0.05 

percent and 0.09 percent across all four climate scenarios, as 

compared to a reference scenario that sees water, sanitation, and 

hygiene coverage levels remain unchanged. 

ESTIMATED CLIMATE 

CHANGE IMPACTS BY 

2041-2050 

From 2041-2050, the effects of water-borne illness on mean labor 

hours vary across the different investment scenarios, with impacts 

most severe from the no action reference scenario. Overall, the 

Dry/Hot mean scenario is expected to result in the most negative 

impacts to labor supply, with shocks of -1.2 percent, -0.3 percent, and 

0.4 percent for the reference, business-as-usual, and aspirational 

scenarios, respectively. The Wet/Warm mean scenario is expected to 

result in slightly less negative impacts with shocks of -1.1 percent, -

0.2 percent, and 0.5 percent for the reference, business-as-usual, and 

aspirational scenarios, respectively  

 

Overview of Impact Channel 

Development policy initiatives related to water, sanitation, and hygiene can indirectly influence 

the severity of potential climate change impacts on human capital, as the quality of infrastructure 

can help to reduce disease incidence and related mortality. This impact channel evaluates the 

benefits of enhanced investments in water, sanitation, and hygiene, by comparing a no action 

reference scenario, a baseline scenario where current trends of coverage and quality of 

infrastructure continue over time, and an aspirational scenario where additional investments in 

water, sanitation, and hygiene services reduce the incidence of water-borne diseases. A summary 
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of the modeling methodology used is presented below, with a more detailed description 

available in Appendix B. 

We follow the methodology applied by Wolf et al. (2019), which is based on a statistical 

relationship between a fecal contamination composite index and the relative risk of diarrheal 

diseases. The fecal contamination composite index utilizes a rubric to assign a 0, 1, or 2 value to 

eight indicators related to water, sanitation and hygiene access (see Figure 22). The index 

corresponds to the sum of these indicators (ranging from 0 to 16 in total), with higher index 

values generally corresponding with higher relative risk of diarrheal disease. The resulting 

relative risks are then calibrated for the country using reported data on mortality and morbidity 

linked to inadequate water, sanitation, and hygiene infrastructure, with the specific data sources 

used to complete the analysis detailed in Appendix C.  

FIGURE 22.  FAECAL CONTAMINATION COMPOSITE INDEX  INDICATORS  

 
Source: Wolf et al. 2019 

Table 4 shows the business-as-usual and aspirational scenarios for 2030 and 2050 of water, 

sanitation, and hygiene coverage as compared to the base year coverage in 2020 (i.e., the 

reference scenario). For instance, 87.2 percent of Dominicans had basic sanitation services in 

2020, which grows to 91 percent and 98.6 percent under the business-as-usual and aspirational 

scenarios by 2030 respectively. By mid-century, the business-as-usual scenario reaches the same 

coverage rates of the aspirational scenario in 2030, while under the aspirational scenario, the 

entire Dominican population is served by basic or safely managed sanitation services as well as 

basic drinking water services. (Note that for the indicator S1/Open defecation, a decrease from 

2.3 percent in 2020 to 0 percent by 2050 under the business-as-uusual and aspirational scenarios 

is a positive outcome where none of the population is exposed to open defection. This decrease 

works in tandem with the increase in the provision of basic sanitation services). 
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TABLE 4 .   COVERAGE OF WASH SERVICES  (%  OF POPULATION)  

Indicator/Description Base 

(i.e., 

reference 

case) 

(2020) 

Business-

As-Usual 

scenario 

(2030) 

Aspirational 

scenario 

(2030) 

Business-

As-Usual 

scenario 

(2050) 

Aspirational 

scenario 

(2050) 

S1/Open defecation 2.3 1.5 0 0 0 

S2/Basic sanitation services 87.2 91 98.6 98.6 100 

S3/Safely managed sanitation 

services 69 88.8 100 100 100 

S4/Community coverage with 

basic sanitation services 87.2 91 98.6 98.6 100 

W1/Basic drinking water services 96.7 97.3 98.5 98.5 100 

W2/Safely managed drinking 

water services 80.9 81.9 83.9 83.9 89.9 

H1/Basic handwashing facilities 60.7 61.9 64.3 64.3 71.5 

H2/Handwashing with soap after 

potential contact 46.9 47.9 49.9 49.9 55.9 

FAECI/Fecal contamination 

composite index 5 5 3 3 2 

RR/Relative risk (i.e., share of 

diarrheal diseases from water, 

sanitation, and hygiene) 90% 90% 58% 58% 40% 

 

Results: Climate Change Effects 

Figure 23 shows the combined effect of increased water-borne illness due to climate change 

(derived from the human health impact channel) and investments in water, sanitation, and 

hygiene infrastructure for the case of the Dominican Republic. Results are represented for 3 

scenarios: (1) a reference scenario in which water, sanitation, and hygiene coverage is kept at 

2020 levels, (2) a business-as-usual scenario that assumes the percent coverage in each metric 

follows the trends observed in the last five years, and (3) an aspirational scenario in which water, 

sanitation, and hygiene coverage increases over time according to stated policy goals. 

Under the reference scenario, shocks hover around -1 percent by 2030 and gradually become 

more negative by mid-century. This occurs as water, sanitation, and hygiene coverage rates 

remain constant while both population and climate change impacts increase. The business-as-

usual scenario results in a shock of around -1 percent in 2030 and gradually becomes less 

negative, reaching a value of around -0.25 percent by 2050. Similarly, under the aspirational 

scenario, shocks are negative in 2030, becoming less negative over time, and reaching a positive 

value of around +0.45 percent by mid-century.  
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FIGURE 23.   EFFECT OF WATER-BORNE ILLNESS ON MEAN LABOR HOURS IN THE DOMINICAN 

REPUBLIC, PER WORKER PER YEAR  

 

Figure 24 shows the gross labor supply effect of water, sanitation, and hygiene investments (i.e., 

not considering climate change impacts on waterborne diseases) for the Dominican Republic. In 

this case, both business-as-usual and aspirational scenarios would result in benefits (i.e., positive 

labor supply shocks). By mid-century, the aspirational scenario, which sees greater investments 

in water, sanitation, and hygiene coverage, would have a greater positive impact on labor supply 

across all climate scenarios than the business-as-usual scenario (Figure 24). Under the 

aspirational scenario, labor supply shocks of approximately +0.09 percent are projected for all  

four climate scenarios considered, while under the business-as-usual scenario, the four climate 

scenarios converge at shocks of approximately +0.05 percent by 2050. 
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FIGURE 24.   LABOR SUPPLY SHOCK FROM WATER -BORNE DISEASES AND WASH INVESTMENTS, 3 -YEAR 

MOVING AVERAGE  

 

 

Summary and discussion 

Overall, enhancing access to water, sanitation, and hygiene services in the country will result in 

positive impacts on labor supply due to a reduced number of deaths and absenteeism from work 

of people in the workforce. A business-as-usual scenario in which recent sanitation and clean 

water growth trends are continued over the course of the coming decades out to 2050, would 

result in a gain in labor supply of about +0.05 percent. A more ambitious aspirational scenario 

that sees the achievement of stated policy goals in terms of water, sanitation, and hygiene 

coverage could result in an almost a twofold gain (i.e., a labor supply shock of about +0.09 

percent) as compared business-as-usual conditions.  

Without any advances in water, sanitation, and hygiene (i.e., keeping current coverage, as 

quantified under the reference scenario) labor supply is expected to be negatively impacted over 

time. Under business-as-usual, water, sanitation, and hygiene investments will offset the 

negative impacts of climate change on waterborne diseases (i.e., the effects analyzed in the 

Human Health impact channel), regardless of the climate scenario. As in the Human Health 

channel, the overall impacts on labor supply are small due to the small share of waterborne 

illnesses in mortality and morbidity, and the limited impact of disease incidence on the labor 

force.  
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4.2  WATER AND AGRICULTURE  

Natural resources are expected to experience a variety of impacts from climate change. 

Temperature increases are likely to reduce the suitability and productivity of crops, pastures, and 

livestock, and changes in precipitation patterns can result in reduced water resources available 

for users including agriculture and hydropower generation, as well as impacting erosion levels 

that can result in additional downstream effects. The estimated impacts to the Dominican 

Republic’s agriculture and natural resources sectors due to climate change are presented below. 

4.2.1  WATER SUPPLY AND DEMAND  

SUMMARY 

SUMMARY Our analysis estimates the impact of climate change on water supply 

by modeling changes in water availability due to variations in 

precipitation. Relative to baseline conditions, we estimate that by the 

2040s, unmet demand will increase by 40 percent under the 

Wet/Warm mean scenario to 21 million cubic meters. Under the 

Dry/Hot mean scenario, impacts are expected to be more severe with 

unmet demand more than doubling to 35 million cubic meters.  

ESTIMATED CLIMATE 

CHANGE IMPACTS BY 

2041-2050 

From 2041-2050, negative impacts to the municipal and industrial 

water sectors are expected to be highest under the Dry/Hot mean 

scenario, resulting in a +1.9 percent increase in unmet water demand 

on average, relative to the baseline. The Wet/Warm mean scenario is 

anticipated to lead to a smaller negative shock, resulting in 

+1.1 percent increase in unmet demand on average by mid-century.  

 

Overview of Impact Channel 

Insufficient water supply can affect manufacturing and other water-dependent industries in a 

country, as well as domestic use by the general population. We use a Water Evaluation And 

Planning (WEAP) water systems model to evaluate shortfalls to municipal and industrial 

demand, given competing uses, climate change effects, and available storage infrastructure. 

Figure 25 illustrates the basin delineation used for the WEAP model. The macroeconomic shock 

from water availability is quantified as either the impact of shortages or the cost of a 

replacement water supply (e.g., desalinization), for the scenarios being considered. A summary 

of the modeling methodology used is presented below, with a more detailed description 

available in Appendix B. 
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FIGURE 25.  BASIN DELINEATION FOR WATER SYSTEMS MODEL  

 

Figure 26 summarizes the modeling approach of the water system for the country. First, local 

data sources are collected and used as inputs together with the projected CMIP6 temperature, 

precipitation, and potential evapotranspiration, to run and calibrate the rainfall-runoff model 

(Turc-Pike) and the crop water demand model (FAO66). The results of these two models are 

respectively the river runoff and the irrigation needs of each basin that feed into the WEAP 

model. Next, the historical and projected water demands (or socio-economic factors determining 

a trend in such demands) in the municipal and industrial sectors are estimated. The WEAP 

model uses all of these inputs to have complete information on the various demands for water 

resources. A river (blue line), a node (red dot) for each demand sector, one or more reservoirs 

(green triangle) and the environmental flow requirement for the river (purple crossed circle) are 

then attributed to each of the 16 basins as shown in Figure 27. Most of the local sources used 

derive information from the Plan Hidrológico Nacional República Dominicana (INDRHI, 2012), 

with this plan providing information on irrigated areas, current and future industrial and 

municipal demands at different resolutions, as well as the gaged mean, minimum, and maximum 

historical average monthly flows of the main rivers. Available information on reservoirs and 

hydropower facilities is used alongside data obtained from AQUASTAT. Additionally, historical 

runoff data, collected from the Global Runoff Data Centre and from local sources, is used to 

calibrate the rainfall-runoff model.  
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FIGURE 26.  WATER RESOURCES MODELING APPROACH  

 

The WEAP water systems model converts the availability of water resources for municipal and 

industrial users into estimates of unmet demand, broken down by sector of the economy (e.g., 

manufacturing) and population (urban, rural). Unmet demands are driven by changes in water 

resources due to climate change, changes in demand from other water-intensive sectors due to 

capital or technological changes, environmental flow requirements, and the priority of uses in 

the country. For municipal and industrial users, the latest water demand volumes were sourced 

from reported statistics, recent master plans, or previously completed studies. Projected demands 

were estimated using historical population growth factors.  
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FIGURE 27.   ILLUSTRATION OF A CATCHMENT MODEL IN WEAP ( LEFT)  AND OF THE DOMINICAN 

REPUBLIC SPECIFIC WEAP MODEL ( RIGHT)  

 

Our analysis also estimates the reduced investment dollars available to identified sectors due to 

spending on water supply infrastructure (e.g., pumping). For example, without sufficient water 

supply, manufacturing industries will need to make capital investments to continue operation 

(e.g., investments to increase water efficiency, investments in infrastructure for inter-basin water 

transfers, investments in desalination technology, etc.). This is implemented in the model as a 

decrease in the capital endowments of manufacturing industries (i.e., since a portion of capital 

will be diverted to ensure sufficient water supply).  

Pumping capacity is constructed to meet any industrial and municipal demands that are not met 

on average, with this capital spending reflected annually in the model.  This analysis uses the 

capital costs of pumping groundwater as a proxy for all supply costs, including conveyance and 

delivery infrastructure (EPA 2013).  

The yearly unmet water demand in cubic meters for the industrial and municipal sectors for each 

climate scenario is extrapolated from the WEAP outputs for the period 2021-2050 and then the 

total value is multiplied by the average energy requirement per pumped cubic meter and 

consequently, by the average cost per unit of energy. To determine the average cost of energy 

per unit, we tried to give priority to local energy sources whenever possible. In cases where local 

sources weren't available, international sources were considered as a viable option. An average 

total value of 0.6 kWh/m3 that comprises extraction (hypothesizing 30 m depth of wells), 

treatment, and conveyance for an average transfer was selected (see Table 5 and Figure 28). 

TABLE 5 .   ENERGY REQUIREMENT FOR EXTRACTION, TREATMENT,  AND CONVEYANCE OF 

GROUNDWATER   

ENERGY REQUIREMENT (KWH/M 3 ) 

EXTRACTION Groundwater 0.25 

TREATMENT  0.0606 

CONVEYANCE  Average Transfer (EPA 2013) 0.3 

TOTAL  0.6106 

Source: (Shannak 2018) 
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FIGURE 28.   AVERAGE ENERGY INTENSITY OF EXTRACTING WATER FROM GROUNDWATE R AQUIFERS AT 

DIFFERENT DEPTHS  

 

Source: (Burt and Soto 2008) 

The annual pumping costs are accompanied by the fixed capital costs of the wells themselves. 

First, we assume an average lifespan of approximately 20 years for each well, with the funding 

starting from 2021 and the construction of new wells taking place in 2031. Then, the average 

number of needed wells is calculated assuming each well can pump 75,700 l/h for 8 h/day for 7 

and 5 days per week for municipal and industrial use respectively (WHO and Wagner 1959). 

These figures result in a value of 1,547,308 m3/y and 1,105,220 m3/y of pumping capacity for 

the two sectors. Finally, the final number of wells to cover the unmet supply is multiplied by the 

average cost of each well, assumed to be $4,342/well (USAID 2004). This fixed cost is 

distributed across the period between 2021-2050, with an interest rate of 5 percent. We then 

estimate shocks assuming 90 and 100 percent coverage.  

Further details on the data sources used to complete the analysis are provided in Appendix C.  

Results: Climate Change Effects 

Water availability is calculated through Turc-Pike and calibrated with local gauged data taken 

from local sources and the National Hydrological Plan. The regions with larger water 

availability are Yaque del Norte and Yuna, followed by Yaque del Sur, as shown in Table 6. 

TABLE 6 .   HISTORICAL MAXIMUM,  MINIMUM, AND MEAN AVERAGE MONTHLY FLOWS IN THE SIX 

HYDROLOGICAL REGIONS OF THE DOMINICAN REPUBLIC  

HISTORICAL AVERAGE MONTHLY FLOW [M3/SEC] 

HYDROLOGICAL REGIONS MAX MIN MEAN 

YUNA 1533.52 37.85 354.11 
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OZAMA-NIZAO 311.35 9.94 59.41 

ESTE 193.27 1.61 29.61 

ATLANTICA 646.32 4.14 58.27 

YAQUE DEL SUR 687.34 15.02 111.76 

YAQUE DEL NORTE 2921.87 71.93 415.64 

 

FIGURE 29.   AVAILABLE GAUGED HYDROLOGICAL DATA FOR THE DOMINICAN REPUBLIC  

The country’s municipal and industrial water demand is mostly proportional to the population 

density, with demand concentrated in the northern and central parts of the country. Figure 30 and 

Figure 31 show the distribution of industrial and municipal water demand respectively for the 

baseline scenario, consistent with the period from 1995-2020. Demand is expected to increase in 

the future as driven by the further development of the country. Projections of future demand 

used in the WEAP model are taken from the country’s national plan for water resource 

management (INDRHI, 2012).  
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FIGURE 30.   BASELINE INDUSTRIAL WATER DEMAND DISTRIBUTION ,  1995-2020  

 

FIGURE 31.   BASELINE MUNICIPAL WATER DEMAND DISTRIBUTION ,  1995-2020  

 

Figure 32 illustrates the distribution of water demand for irrigation under the baseline scenario, 

with the central and north-western regions accounting for the highest share of the country’s total 
irrigation demand. 
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FIGURE 32.   BASELINE IRRIGATION WATER DEMAND DISTRIBUTION ,  1995-2020  

 
 

Figure 33 shows the distribution of irrigated areas in the country. Overall, the Yaque del Norte, 

Yaque del Sur, and Yuna account for the highest share of the country’s total irrigation demand. 

FIGURE 33.  DISTRIBUTION OF IRRIGATION AREAS  

 

 
 

The average unmet irrigation demand for the baseline period (1995-2020) is mostly concentrated 

in Yaque del Norte, and despite the high runoff of the region, it presents an annual water deficit 
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between 40 and 50 percent (see Figure 34). Atlantica and the regions in the South surrounding 

the capital present between 10 and 20 percent of annual unmet irrigation demand due to their 

lower runoff and the priority given to the municipal and industrial sectors, which are 

predominant in those regions. As a result of this allocation of priorities, in general, the unmet 

demand for the municipal and industrial sectors tends to be lower (between 1 and 5 percent) than 

the unmet irrigation demand, and is concentrated in the most populous areas (see Figure 35). 

FIGURE 34.   AVERAGE UNMET IRRIGATION DEMAND ,  1995-2020  

 

FIGURE 35.  AVERAGE MUNICIPAL AND INDUSTRIAL UNMET DEMAND ,  1995-2020  
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Our modeling results suggest there may be significant variation in unmet irrigation demand by 

mid-century. Across scenarios, the Dry/Hot mean scenario is expected to result in a substantial 

increase in unmet demand, while the Wet/Warm mean scenario is expected to lead to a smaller 

increase in unmet demand. Under the Dry/Hot mean scenario, changes in unmet demand range 

from +6 to +16 percent, relative to the baseline for the period 2041 to 2050 (see Figure 36). 

These high values of unmet demand for the irrigation channel are driven to some extent by the 

priority sequence of water allocations to different water users within the water systems model. 

The municipal and industrial sectors experience relatively low unmet demand as they are first in 

the water allocation sequence, while irrigated agriculture experiences much higher unmet 

demand under certain future scenarios as it is deprioritized in the water allocation sequence. That 

said, the Wet/Warm mean scenario is associated with a smaller negative effect (i.e., reductions 

in unmet irrigation demand), with the change in unmet irrigation demand ranging from +3 

percent to +11 percent between 2041 to 2050, relative to the baseline (see Figure 36).  

FIGURE 36.   CHANGE IN UNMET IRRIGATION DEMAND,  3 -YEAR MOVING AVERAGE  

 

 
 

The output of the WEAP model shows a mean unmet water demand of 4 percent of total demand 

for the municipal and industrial sectors during the baseline period. By the 2040s, unmet demand 

increases. Relative to the baseline period, unmet demand is projected to increase by +1.9 percent 

on average under the Dry/Hot mean scenario from 2041-2050. Changes under the Wet/Warm 

mean scenario are expected to be less pronounced for the period 2041-2050, resulting in a 

+1.1 percent increase in unmet water demand on average, relative to the baseline (see Figure 
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37). It is worth noting that these estimates of unmet demand are likely low compared to the 

unmet demand experienced across other water-using sectors (such as irrigation) given that the 

municipal and industrial sectors (as well as water for environmental flows) are given the highest 

priority when it comes to allocating limited available water resources within the water systems 

model used. In terms of the total unmet demand by 2041-2050, these values correspond to an 

increase in the volume of unmet demand from 15 million m3 under the baseline to 35 million m3 

(+133 percent) under the Dry/Hot mean scenario. Under the Wet/Warm mean scenario, unmet 

demand increases by approximately 40 percent to 21 million m3, relative to the baseline. 

FIGURE 37.   CHANGE IN THE UNMET MUNICIPAL AND INDUSTRIAL WATER DEMAND,  3 -YEAR MOVING 

AVERAGE  

 

The municipal and industrial water supply shock in the Dominican Republic is calculated 

annually in dollars as reported above. The country-specific energy costs in this case are equal to 

0.16 $/kWh for industry and 0.125 $/kWh for households (DOE 2020) and, multiplied by the 

necessary pumping energy and by the supply to be delivered. This results in an average of  $2.29 

million and $3.37 million respectively for the Wet/Warm and Dry/Hot mean scenarios, assuming 

the total unmet water demand is covered all the time. If instead a 90 percent coverage is 

assumed, these values decrease to $1.44 and $1.69 million for the same scenarios in the period 

2031-2050. 

Regarding the fixed capital costs, a total of 21 wells will be needed for the Wet/Warm mean 

scenario, rising to 22 in the Dry/Hot mean scenario, for a total annual cost of $ 5,984.25 and 

$6,078.83, respectively, if we assume a 5 percent interest rate. With 90 percent coverage, we 
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expect annual costs will decrease to $3962.47 and to $3978.17 for the Wet/Warm and Dry/Hot 

mean scenarios, respectively. 

TABLE 7 .  AVERAGE ANNUAL COSTS FOR PUMPING UNMET WATER SUPPLY IN THE DOMINICAN 

REPUBLIC  

 
 

100% COVERAGE 90% COVERAGE 

WET/WARM DRY/HOT WET/WARM DRY/HOT 

FIXED CAPITAL COST ($) 5,984 6,078 3,962 3,979 

ENERGY COST ($) 2,309,094 2,355,500 1,443,340 1,690,258 

TOTAL 2,315,078 2,361,579 1,447,303 1,694,237 

 
Results: Adaptation 

The proposed adaptation strategies involve improving the irrigation efficiency from a baseline of 

20 percent to a target of 40 percent and increasing the volume of reservoirs specifically 

designated for irrigation purposes by 20 percent. Figure 38 illustrates the projected impacts of 

implementing these measures on unmet demand by the year 2050, in relation to the respective 

baselines for the Hot/Dry and Wet/Warm mean scenarios. For the Hot/Dry mean scenario, the 

implementation of the proposed adaptation measures is estimated to result in a change in unmet 

demand from +15 to 310 percent in the year 2050, with respect to the baseline. Conversely, for 

the Wet/Warm mean scenario, these adaptation measures result in a change from +5 to 312 

percent in the year 2050, with respect to the baseline. 

FIGURE 38.  CHANGE IN UNMET IRRIGATION DEMAND,  3 -YEAR MOVING AVERAGE  
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Figure 39 shows the average unmet irrigation demand by basin and highlights the positive 

changes under both in the Dry/Hot and Wet/Warm mean scenarios due to the irrigation 

adaptation measures. In the Dry/Hot mean scenario, we can observe a change with respect to the 

no adaptation case of around +30 percent. 

FIGURE 39.   AVERAGE UNMET IRRIGATION DEMAND BY BASIN,  2041 -2050  

 

Figure 40 shows the change in unmet irrigation demand for each water basin in the 2040s 

compared to the historical baseline with and without adaptation. Implementing the adaptation 

measures is projected to reduce unmet demands for most basins under the Dry/Hot and 

Wet/Warm mean scenarios. Without adaptation, the most negatively impacted basin is projected 

to have around 30 percent higher unmet irrigation demand compared to the baseline under the 

Dry/Hot mean scenario (bottom left panel). With adaptation, unmet irrigation demand is 

expected to decrease in that basin by around 20 percent compared to the baseline under the 

Dry/Hot mean scenario (top right panel). 
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FIGURE 40.  CHANGE IN UNMET IRRIGATION DEMAND  BY BASIN,  2041-2050  

 

The adaptation interventions evaluated for the irrigation channel also lead to a slight 

improvement (i.e., reduction of unmet water demand) for the municipal and industrial sectors. 

Figure 41 shows a reduction in unmet municipal and industrial water demand of 0.3 percent on 

average for both Dry/Hot and Wet/Warm mean scenarios, between the years 2045 and 2050 

compared to the baseline.  
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FIGURE 41.  CHANGE IN UNMET MUNICIPAL AND INDUSTRIAL WATER DEMAND ,  3-YEAR MOVING 

AVERAGE  

 

Figure 42 shows the average unmet municipal and industrial demand by basin and highlights the 

relatively limited changes for both the Dry/Hot and Wet/Warm mean scenarios resulting from 

the irrigation adaptation measures. The limited effect of irrigation adaptation measures on 

reducing unmet municipal and industrial demand is due to the fact that municipal and industrial 

demand already have higher priority in the water allocation sequence. Figure 43 shows the 

change in unmet municipal and industrial water demand for each basin in the 2040s compared to 

the historical baseline with and without adaptation. These results similarly show relatively 

limited changes between the no adaptation base case and the adaptation case. 
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FIGURE 42.   AVERAGE UNMET MUNICIPAL AND INDUSTRIAL WATER DEMAND BY BASIN, 2041 -2050  

 
 

FIGURE 43.   CHANGE IN UNMET MUNICIPAL AND INDUSTRIAL WATER DEMAND BY BASIN,  2041 -2050  
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Summary and discussion 

Overall, the regions with the highest water availability in the country are Yaque del Norte and 

Yuna, followed by Yaque del Sur. Municipal and industrial water demands are primarily 

influenced by population density, with higher demand concentrated in the Central-south regions 

of the country. Projections for future demands, calculated with the WEAP model, show that the 

regions featuring larger irrigated areas are Yaque del Norte, Yaque del Sur, and Yuna, 

accounting for a substantial portion of the country's total irrigation demand. However, Yaque del 

Norte experiences a considerable deficit in irrigation supply, ranging between 40 and 50 percent 

annually. The regions of Atlantica and the areas surrounding the capital exhibit unmet irrigation 

demand ranging from 10 to 20 percent due to lower runoff and the prioritization of the municipal 

and industrial sectors in these regions. The unmet demand for the municipal and industrial 

sectors is generally lower (between 1 and 5 percent) and concentrated in the more densely 

populated areas. 

Modeling outcomes indicate the potential for significant variations in unmet irrigation demand 

by the middle of the century. The Dry/Hot mean scenario is anticipated to result in a substantial 

increase in unmet demand, ranging from +6 to +16 percent relative to the baseline period (1995-

2020). In contrast, the Wet/Warm mean scenario exhibits a smaller increase in unmet demand, 

ranging from +3 to +11 percent over the same period. For the municipal and industrial sector, 

the unmet demand is expected to rise by an average of 1.9 percent from 2041 to 2050 for the 

Hot/dry mean scenario, while the Wet/Warm mean scenario predicts a smaller increase of 1.1 

percent compared to the baseline. 

The implementation of adaptation strategies aimed at enhancing irrigation efficiency (increasing 

efficiency from 20 percent to a target of 40 percent), as well as expanding the capacity of 

reservoirs dedicated to irrigation by 20 percent. In the Dry/Hot mean scenario, the 

implementation of these measures is projected to result in a change in unmet irrigation demand 

from +15 to -10 percent in 2050 compared to the scenario without adaptation. On the other hand, 

in the Wet/Warm mean scenario, the change ranges from +5 to -12 percent in 2050 compared to 

the scenario without adaptation. The adaptation strategies implemented for the irrigation sector 

also have an effect on the municipal and industrial sector, slightly decreasing unmet demand in 

these sectors.  

 

4.2.2  CROP PRODUCTION  

SUMMARY 

SUMMARY Our analysis estimates the impact of climate change on irrigated and 

rainfed crop production by modeling changes in water availability 

and extreme heat. We estimate that by 2050, climate change may 

result in total production shocks ranging from +4 percent to -22 

percent. 
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ESTIMATED CLIMATE 

CHANGE IMPACTS BY 

2041-2050 

From 2041-2050, negative impacts to rainfed and irrigated crop 

production are highest from the Dry/Hot mean scenario. For the 

rainfed crops considered, the Dry/Hot mean scenario is anticipated to 

result in a -19 percent shock by mid-century. For the irrigated crops 

considered, the Dry/Hot mean is expected to result in a -16 percent 

production shock by mid-century. 

 

Overview of Impact Channel 

Under climate change, crop yields have the potential to be affected by changes in rainfall 

patterns/irrigation water availability, increasing evaporative demands, and extreme heat as 

temperatures rise. A summary of the modeling methodology used to estimate the impacts of 

climate change on crop production is presented below, with a more detailed description available 

in Appendix B. 

First, representative crops were identified for the country, with the chosen crops representing at 

least 80 percent of the total production revenues as well as harvested area in the country. Data on 

harvested area, production, yield, revenue statistics, as well as irrigation statistics, were collected 

for each crop from available sources. When it comes to water availability, we apply the 

methods documented in the Food and Agriculture Organization’s Irrigation and Drainage Paper 

66, in which rainfed crop yields are estimated by applying crop-specific water sensitivity 

coefficients to the ratio of effective precipitation to potential crop evapotranspiration. For 

irrigated crops, the water availability analysis additionally utilized a water system model, 

namely WEAP. The unmet water demands at a basin scale estimated by the water system model 

were then used to quantify reductions in crop yields, similar to rainfed crops. For heat stress, the 

impacts to crop yields from extreme heat were modeled using AquaCrop’s approach, which 

considers a negative relationship between supra-optimal temperatures during the flowering stage 

of crop development.  

Finally, water availability and temperature shocks were then combined into a single shock by 

crop, with these effects aggregated nationally based on the spatial distribution of crop 

production. Crop-specific shocks were also aggregated into a total production shock using crop 

revenues as weights. Details on the data sources used to complete the analysis are provided in 

Appendix C. 

Results: Climate Change Effects 

The majority of crop production area in the country is reserved for cocoa bean and sugarcane 

production, which utilize around 15 percent and 17 percent of agricultural land, respectively 

(Figure 44). However, when considering production yields, cocoa beans accounted for around 1 

percent of total production from 2016 3 2020, while sugarcane accounted for around 38 percent 

of the country’s production. The share of revenues by crops is roughly split between tropical 

fruits, avocados, vegetables, and bananas, with these four crops accounting for roughly 60 

percent of revenues. 
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FIGURE 44.  SHARE OF CROPS BY AREA, PRODUCTION, AND REVENUE ,  2016 -  2020  

 

By 2050, climate change is anticipated to result in varied production shocks on rainfed crops 

(Figure 45). Among high-yielding crops such as sugarcane, the Wet/Warm mean and Dry/Hot 

mean scenarios are expected to result in a +2 percent and -26 percent shock, respectively. Across 

GCMs, production shocks for sugarcane range from around +6 percent to -31 percent. High-

revenue crops such as avocadoes and bananas are expected to experience a 0 percent shock 

under the Wet/Warm mean scenario, and a -25 and -28 percent shock from the Dry/Hot mean 

scenario, respectively. Generally, most crops are expected to experience a positive production 

shock under at least some GCMs, with the magnitude of the shock ranging from +1 percent to 

+8 percent for different crops. However, vegetables are expected to exclusively experience 

negative production shocks across the Dry/Hot mean scenario, Wet/Warm mean scenario, and 

selected GCMs.  
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FIGURE 45.  RAINFED CROP PRODUCTION SHOCK,  2041 –  2050  

 

Based on the projected production shocks during the period out to 2050 as compared to the 

baseline, the overall impact of climate change on rainfed crops results in both positive and 

negative shocks (Figure 46). Overall, the Dry/Hot mean scenario is anticipated to result in only 

negative production shocks, while the Wet/Warm mean scenario is expected to result in small 

positive production shocks through the early century which grow more negative by mid-century. 

When considering individual GCMs (i.e. the grey-shaded range shown in Figure 46), production 

shocks range from around 0 percent to -10 percent by 2030. Here, the Wet/Warm and Dry/Hot 

mean scenarios result in a production shock of around -6 and -4 percent, respectively. By 2050, 

the Wet/Warm and Dry/Hot mean scenarios are expected to result in a -1 percent and -20 percent 

shock. Across GCMs, production shocks range from +6 percent to -26 percent. 
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FIGURE 46.  RAINFED CROP PRODUCTION SHOCK,  3-YEAR MOVING AVERAGE  

 

 

By 2050, climate change is anticipated to have varied shocks on a majority of irrigated crops 

(Figure 47). Among high-yielding crops such as sugarcane, the Wet/Warm mean and Dry/Hot 

mean scenarios are expected to result in a -1 percent and -12 percent shock, respectively. Across 

GCMs, production shocks for sugarcane range from around 1 percent to -16 percent. High-

revenue crops such as avocadoes are expected to experience a 0 percent shock under the 

Wet/Warm mean scenario, and a -3 from the Dry/Hot mean. Generally, across GCMs, most 

crops are expected to experience a positive production shock that ranges from 1 percent to 4 

percent. However, citrus, tobacco, potatoes, and vegetables are expected to exclusively 

experience negative production shocks across the Dry/Hot mean, Wet/Warm mean, and selected 

GCMs.  
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FIGURE 47.  IRRIGATED CROP PRODUCTION SHOCK, 2041 –  2050  

 

Based on the projected production shocks relative to the baseline, the overall impact of climate 

change on irrigated crops results in predominantly negative shocks (Figure 48). Overall, the 

Dry/Hot mean scenario is anticipated to result in only negative production shocks out to 2050, 

while the Wet/Warm mean scenario is expected to result in small positive production shocks 

through the early century which begin to become more negative by mid-century. When 

considering individual GCMs (i.e. the grey shaded range shown in Figure 48), production shocks 

range from around -2 percent to -9 percent by 2030. Here, the Wet/Warm and Dry/Hot mean 

scenarios result in a production shock of around -5 and -3 percent, respectively. By 2050, the 

Wet/Warm and Dry/Hot mean scenarios are expected to result in a -3 percent and -13 percent 

shock, respectively. Across GCMs, production shocks range from 0 percent to -18 percent.  
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FIGURE 48.  IRRIGATED CROP PRODUCTION SHOCK, 3 -YEAR MOVING AVERAGE  

 

Adaptation  

With the modeled effects of climate change on rainfed and irrigated crop production documented 

above, this section now looks at the effect of investing in adaptation measures. As introduced in 

Section 3.2, we consider a proactive adaptation scenario and compare it to a no-action 

baseline that assumes no change in crop management practices.  

When it comes to reducing the impacts of climate change on crop production, there are a variety 

of possible adaptation interventions that could be pursued. These include growing more heat and 

drought-tolerant and resistant crop species and individual varieties, as well as management 

practices such as increasing the use of mulching, cover crops, and fertilizers. Table 8 shows the 

different adaptation interventions evaluated for this channel.  

TABLE 8 .   ADAPTATION SCENARIOS AND INTERVENTIONS EVALUATED  

ADAPTATION INTERVENTION 

SCENARIO 

NO-ACTION 

BASELINE 
PROACTIVE ADAPTATION 

Development of new irrigation 

infrastructure to address water stress 
No change 

Add new irrigated areas up to 100% of the 

estimated irrigation potential in the country 

(i.e., an additional 403,500 hectares) by 

2050. 
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Reduction in unmet demand for irrigated 

crops 

20% increase in the volume of reservoirs 

designated for irrigation, as well as 

improvements in irrigation efficiency from 

20% to 40%. 

Crop switching to more climate-resilient 

crops (e.g., citrus, avocado, tropical 

fruits, maize, groundnuts, potato, and 

cassava) 

Increase relative size of selected crops by 2 

(i.e., a 100% increase in the production of 

these crops). 

Increase share of heat-tolerant crop 

varieties (e.g., cassava, vegetables, 

potatoes, citrus, coffee, rice, and 

cocoa) to reduce heat stress on 

vulnerable crops 

Substitute 50% of current production of the 

selected crops for a heat-tolerant variety by 

2050. 

All interventions All of the above. 

 

Figure 49 shows the impact of the different individual adaptation interventions on overall crop 

production in the country. Under the no-action baseline scenario, we estimate crop production 

shocks by 2050 of approximately -3 and -15 percent under the Wet/Warm and Dry/Hot mean 

scenarios respectively. When considering adaptation interventions that increase the use of heat-

tolerant varieties and utilize crop-switching techniques, these strategies do little to lessen climate 

change related impacts and result in shocks comparable to the no-action baseline. In contrast, 

investments aimed at increasing irrigation, reducing unmet irrigation demand, and employing a 

combination of all interventions appear to be most effective in reducing shocks relative to the 

no-action baseline. For all of these investment options, the Wet/Warm mean scenario is expected 

to result in a positive production shock by mid-century, ranging from 1 to 5 percent, as 

compared to -3 percent under the no-action baseline. Under the Dry/Hot mean scenario, these 

interventions are expected to result in a production shock ranging from -10 to -3 percent, as 

compared to -15 percent under the no-action baseline.  
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FIGURE 49.  CROP PRODUCTION SHOCKS,  3 -YEAR MOVING AVERAGE,  ASSUMING INVESTMENT IN 

IRRIGATION INFRASTRUCTURE, REDUCED IRRIGATION DEMAND,  CROP -SWITCHING,  AND 

HEAT-TOLERANT VARIETIES  

 

Figure 50 shows the effects on crop production when utilizing all adaptation interventions. 

Overall, this intervention is expected to have positive impacts on a majority of selected crops by 

lessening the production shock relative to the no-action baseline. For some crops, specifically, 

plantains, sugarcane, tropical fruits, and rice, this adaptation strategy results in only a positive 

range of production shocks, as compared to the no-action baseline. Yet, some crops such as 

beans, coconut, and bananas are expected to experience no change in shocks relative to the no-

action baseline. 
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FIGURE 50.   CROP PRODUCTION SHOCK WITH ALL ADAPTATION INTERVENTIONS,  2041 -2050  

 
 

Summary and discussion 

In general, climate change is expected to result in yield losses for both rainfed and irrigated 

crops in the country. That said, the effect on rainfed productivity is expected to drop by -19 

percent by mid-century under a Dry/Hot future, while irrigated productivity by -16 percent. 

Assuming harvested areas remain constant, yield losses will translate directly into production 

and revenue losses. 

The variability of impacts by mid-century, however, is high. For all rainfed crops but vegetables, 

the best-case scenario could result in positive yield gains that range between 1 and 8 percent, 

while the worst-case estimate ranges between -20 and -41 percent. Mean Wet/Warm projections 

estimate impacts around zero for most crops. The three most vulnerable rainfed crops (i.e., the 

ones with the lowest worst-case) are beans, maize, and vegetables. The most resilient crops 

include primarily cash crops: citrus fruits, cocoa beans, groundnuts, and tropical fruits, as well as 

cassava. Shock variability for irrigated crops is also large, but less homogeneous across crops. 

While plantains, vegetables, and potatoes impacts range widely and could even see positive 

gains, avocados, and tropical fruits show high resilience to climate change. These two crops are 

also the two most important for revenue generation in the country.  

Overall, both the magnitude and variability of impacts on crop production of most crops come 

from changes in water resources. In this regard, avocados, citrus, vegetables, and potatoes are 

the least impacted by changes in the water supply (both irrigation and precipitation). Heat stress 

on crop productivity has limited effects in the Dominican Republic. In general, the shock does 

not surpass a -5 percent negative shock, except for vegetables that can see yield declines up to -

20 percent by mid-century. Avocado, beans, coconut, maize, groundnuts, and sugarcane are not 

impacted due to lack of exposure (i.e., location of harvested areas) or vulnerability (i.e., high 

tolerance to heat by the crop).  
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In terms of adaptation, expanding irrigation and increasing its efficiency could result in the 

highest gains, roughly offsetting the climate change impacts under a Wet/Warm mean scenario 

by mid-century, with other measures having smaller and more localized benefits.  

 

4.2.3  EROSION  

SUMMARY 

SUMMARY Our analysis estimates the impact of climate change on soil loss risk 

by modeling changes in runoff, climatic and land factors, and farm 

management practices. We estimate that by 2040, erosion risk will be 

highest in the southern and western regions of the country, with 

impacts more pronounced under the Wet/Warm mean. Additionally, 

we expect the Dry/Hot mean scenario to result in a decrease in 

erosion and an increase in production for selected crops, with shocks 

ranging from -1 percent to -8 percent by 2040.  

ESTIMATED CLIMATE 

CHANGE IMPACTS BY 

2041-2050 

Under the Wet/Warm mean scenario, the impact of erosion on crop 

production intensifies in the early part of this period, with impacts 

peaking in 2045 at -0.67 percent, and becoming less severe by 2050. 

Under the Dry/Hot mean, production shocks are positive, peaking at 

0.38 percent by 2050. 

 

Overview of Impact Channel 

Erosion can be detrimental to landscapes, impacting plant and animal life, reducing the efficacy 

of reservoir storage and hydropower production through sedimentation, and causing declines in 

agricultural production by removing valuable nutrients from the topsoil, all of which can be 

made worse if climate change intensifies future rainfall intensity. A summary of the modeling 

methodology used to estimate the impacts of climate change on erosion is presented below, with 

a more detailed description available in Appendix B. 

To determine erosion rates, we use the Revised Universal Soil Loss Equation, which requires 

five key inputs, namely rainfall-runoff erosivity, climate and land factors, as well as activity and 

farm-level management factors. Generally, areas that are impermeable (e.g., rocky surfaces or 

waterbodies) and areas with mean slopes that exceed 20 percent are excluded from the analysis 

because erosion on these surfaces tends to be low or highly uncertain with the Revised Universal 

Soil Loss Equation approach.  

Soil loss can reduce the nutrients available to crops, if not replenished by fertilizers, by eroding 

the topsoil. Although topsoil is generated naturally, natural generation is slow. To approximate 

the impact erosion has on the major crops grown in the country, we use a method developed by 

the Food and Agriculture Organization (Kassam et al. 1991). The approach is based on a 

tolerable loss rate over time and varies by levels of fertilizer inputs as well as the susceptibility 

of soils to productivity loss. We use raster data of fertilizer use (nitrogen and phosphorus) to 
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determine the level of input in a country. Further details on the data sources used to complete the 

analysis are provided in Appendix C. 

Results: Climate Change Effects 

During the baseline period, soil erosion risk is concentrated in the southern and western regions 

of the country, specifically surrounding urban areas (Figure 51). In the south and southwest, soil 

erosion risk is high in the areas surrounding San Cristóbal and Barahona. Here, soil erosion risk 

ranges from around 154 - 6851 tons/ha/year. Similarly, in the west, erosion risk is high outside 

of San Juan, which experiences similar soil erosion risks as San Cristobal and Barahona. 

FIGURE 51.  EROSION DURING BASELINE PERIOD  

  

Relative to baseline conditions, the Wet/Warm mean scenario is expected to result in an increase 

of erosion while the Dry/Hot mean scenario is expected to result in a decrease in erosion by 

2040 (Figure 52 and Figure 53). From the Wet/Warm mean scenario, changes in erosion risk 

range from 0 to -50 tons/ha/year throughout the country. Areas surrounding San Cristobal and 

Barahona are expected to experience high relative changes in risk at around -50 ton/ha/year. 

Areas in the eastern part of the country surrounding El Seibo are also expected to experience a 

similar magnitude of erosion risk by 2040. 

Compared to the Wet/Warm mean scenario, erosion from the Dry/Hot mean scenario declines 

from baseline conditions. Overall, erosion declines throughout the country with areas in the 

southern and southwest portions of the country seeing a larger decrease in risk.  
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FIGURE 52.  EROSION RISK BY 2040 UNDER WET/WARM MEAN SCENARIO  

 

FIGURE 53.   EROSION RISK BY 2040 UNDER DRY/HOT MEAN SCENARIO  

 

Erosion is also expected to have important implications for crop production within the country. 

Specifically, the Dry/Hot mean scenario is expected to result in production gains for all crops 

considered (Figure 54). Shocks from the Dry/Hot mean scenario are highest for potatoes and 

vegetables which are expected to experience production gains (i.e., negative production losses) 

of around -8 percent and -6 percent, respectively. For high-yielding crops such as sugarcane, the 

Dry/Hot mean scenario is expected to result in productivity gains of around -4 percent by mid-

century. The Wet/Warm mean scenario results in negative impacts to most crops considered. 
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Under this scenario, crops generally experience a negative production shock ranging from 0 

percent to 2 percent.  

FIGURE 54.   CROP PRODUCTION LOSS DUE TO EROSION BY 20 40  

 

Adaptation 

With the modeled effects of climate change on erosion and subsequently on crop production 

documented above, this section now looks at the effect of investing in adaptation measures. As 

introduced in Section 3.2, we consider a proactive adaptation scenario and compare it to a no-

action baseline that assumes no change in soil management practices. When it comes to 

reducing the impacts of climate change on erosion, there are a variety of possible adaptation 

interventions that could be pursued, with most focused on improving soil conservation practices 

such as reduced or zero tillage, mulching, leaving of crop residue on the field post-harvest, or the 

planting of cover crops. Table 9 shows the different adaptation interventions evaluated for this 

channel, with these actions assumed to be implemented in 2025.  
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TABLE 9 .  ADAPTATION SCENARIOS AND INTERVENTIONS EVALUATED  

ADAPTATION 

INTERVENTION 

SCENARIO 

NO-ACTION 

BASELINE 

PROACTIVE ADAPTATION 

LOW HIGH 

Practice 

conservation 

tillage 

No change 

Increase conservation tillage to 

achieve an adoption rate of 10% 

by 2050 

Increase conservation tillage to 

achieve an adoption rate of 20% 

by 2050 

Leave crop 

residue on fields 

Increase the practice of leaving 

crop residue on fields to 10% by 

2050 

Increase the practice of leaving 

crop residue on fields to 20% by 

2050 

Combination of 

conservation 

tillage and crop 

residues being 

left on fields 

10% conservation tillage  

                  + 

10% crop residues by 2050 

20% conservation tillage  

                  + 

20% crop residues by 2050 

 

Results: Adaptation  

Figure 55 shows the estimated crop production shocks for the various adaptation interventions 

by 2041-2050, relative to a baseline period of 1995-2020. The top <no adaptation= row of  
Figure 55 represents the shocks that would be experienced if no adaptation actions were taken 

and serves as the baseline for comparing the effect of different adaptation actions. Across both 

the no-action baseline as well as most of the adaptation interventions considered, the production 

shocks are generally worse (i.e., production losses, or smaller production gains) under the 

Wet/Warm mean scenario (wetter scenarios typically result in more soil erosion, which drives 

greater losses in crop production) as compared to the Dry/Hot mean scenario (drier scenarios 

typically have less soil erosion, retaining more of the topsoil, resulting in smaller negative 

impacts to crops).   

Under the Wet/Warm mean scenario we expect low conservation tillage and low use of crop 

residues to result in less severe crop production shocks as compared to the no-action baseline. 

Under the no-action baseline, the Wet/Warm mean scenario is anticipated to result in a crop 

production shock of -0.75 percent. However, low crop residue use and low conservation tillage 

practices are expected to result in production shocks of approximately -0.5 and -0.4 percent, 

respectively. Under the Dry/Hot mean scenario, the adaptation strategies evaluated are expected 

to result in positive production shocks, however, these shocks are smaller than those projected 

for the no-action baseline case under the Dry/Hot mean scenario (+1.75 percent). Under this 

scenario, a low combined adaptation approach and low conservation tillage practices are 

expected to be the most beneficial adaptation strategies analyzed, resulting in shocks of +1.6 and 

+1.55 percent respectively. Further, with both adaptation interventions we expect lower levels of 

each adaptation intervention to produce greater improvements than higher levels (i.e., 10 percent 

versus 20 percent conservation tillage or crop residues).   
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FIGURE 55.   CROP PRODUCTION SHOCK BY THE 2040S,  WITH AND WITHOUT ADAPTATION  

 
 

4.2.4  HYDROPOWER   

SUMMARY  

SUMMARY  Our analysis estimates the impact of climate change on hydropower 

production by modeling changes in water availability and extreme heat. 

We estimate that by 2050, climate change may result in hydropower 

production shocks ranging from +4 percent to +17 percent.  

ESTIMATED CLIMATE 

CHANGE IMPACTS BY 

2041-2050  

From 2041-2050, negative impacts to hydropower production are 

highest from the Dry/Hot mean scenario which is expected to result in a 

-22 percent shock by 2045. We expect the Wet/Warm mean scenario to 

result in a significant positive production shock of +17 percent by 

2045.  

Overview of Impact Channel  

Climate change may impact hydropower generation directly through a reduction in river runoff 

and reservoir levels, and indirectly through changes in the water demands for competing uses 

(e.g., irrigation). We model these nexus effects using a WEAP water systems model. To estimate 

the effect of climate change on hydropower production, we apply a reservoir balance approach 

to each catchment, with the change in reservoir storage driven by inflows, reservoir releases, and 

evaporative losses. A summary of the modeling methodology used is presented below, with a 

more detailed description available in Appendix B.  
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Hydropower generation is a function of flow through the turbines and potentiometric water head 

each month. To convert reservoir storage to hydropower generation (including for run-of-river 

facilities) requires a volume-elevation curve to relate volume to head, as well as turbine 

elevations, maximum turbine flows, turbine efficiencies, minimum turbine flows, and capacity 

factors. Modeled runoff data from the water systems model, as well as data on reservoir storage, 

demand, and outflows, served as inputs into the reservoir balance model. Monthly hydropower 

generation was produced as model output and an evaluation of climate change impacts was 

carried out by comparing the baseline production across the different scenarios being considered. 

Details on the data sources used to complete the analysis are provided in Appendix C.  

Results: Climate Change Effects  

Hydropower production in the country varies based on the total runoff of each basin. We 

consider 35 reservoirs within the model, with a total production of approximately 1.16 TWh/y. 

They are mainly distributed in the Yaque del Norte (Tavera and Moncion complex), Nizao 

(Aguacate and Jiguey) and Yuna region (see Figure 56 and Figure 57).  

FIGURE 56.   MAJOR HYDROPOWER FACILITIES  
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FIGURE 57.   BASELINE HYDROPOWER PRODUCTION  

 

 
The final output of the model shows an increase in the production under the Warm/Wet mean 

scenario in the 2040s, ranging from -1 percent to +17 percent. The impacts of the Dry/Hot mean 

scenario are instead always negative, with a range of -8 percent to -22 percent in the 2040s 

(Figure 58). Under the Dry/Hot mean scenario, Aguacate, Jiguey, Moncion and Tavera are 

expected to experience a decrease in production of -7, -9.35, -7.8, and -10.6 percent, 

respectively. This reflects the need to explore and implement concrete adaptation options in 

order to meet the future energy demand of the country. The change in production by basin under 

the Wet/Warm and Dry/Hot mean scenarios with respect to the baseline are shown in Figure 58.  

FIGURE 58.  HYDROPOWER GENERATION SHOCK,  3 -YEAR MOVING AVERAGE  

 

 

 

 

 

 

 

 

 

Results: Adaptation 
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FIGURE 59.   CHANGE IN HYDROPOWER GENERATION SHOCK,  3 -YEAR MOVING AVERAGE, RELATIVE TO 

THE BASELINE  

 

 

 

 

 

 

 

 

 

 

 

 

 

Results: Adaptation  

Being prepared for the climate change effects on water availability and consequently on 

hydropower generation will require careful planning and water management in the future. A key 

component of this will be an increase in water storage, that will contribute to minimizing 

shortfalls in dry months of the year. We model an increase of 10 percent in the country’s 
reservoir capacity, as well as a 20 percent increase in the maximum turbine capacity for 

hydropower facilities. It is assumed these changes will be achieved by shifting to more efficient 

turbines and increasing the capacity of reservoirs. 

As seen in Figure 59, this adaptation intervention will result in a significant hydropower 

generation increase (+20 percent) under both the Wet/Warm mean and the Dry/Hot mean 

scenarios. This corresponds to an increase in energy production from 900 to 1125 GWh and 

from 750 to 875 GWh respectively, by 2050 (see Figure 60). These results highlight that 

informed investments in adaptation could bring important positive impacts on the country’s 
hydropower production.  
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FIGURE 60.  CHANGE IN HYDROPOWER GENERATION (GWH),  3 -YEAR MOVING AVERAGE, RELATIVE TO 
THE BASELINE  

 

Figure 61 shows projected hydropower production under different climate scenarios. These 

results show how both with and without an increase in the turbine capacity, the Wet/Warm 

scenarios (blue lines) tend to be above the Hot/Dry ones (red lines). Total generation will be 

higher in the adaptation case, ranging from 750 to more than 1350 GWh. With adaptation, the 

Hot/Dry scenarios will result in production ranging between 740 to 1125 GWh, which is, as 

expected, still below the production levels achieved under the Wet/Warm scenarios. 
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FIGURE 61.   HYDROPOWER GENERATION (GWH) FOR EACH SCENARIO,  3 -YEAR MOVING AVERAGE  

 

4.3  INFRASTRUCTURE AND SERVICES  

Climate change is likely to impact infrastructure, and the services provided by it in a variety of 

ways including by increasing the frequency and magnitude of extreme events that result in 

damages to assets, as well as by increasing deterioration caused by heat and precipitation levels. 

The estimated impacts to the Dominican Republic’s infrastructure and services due to climate 

change are presented below.  

4.3.1  INLAND FLOODING  

SUMMARY 

SUMMARY This analysis estimates the impact of climate change on inland 

flooding events and quantifies impacts to capital relative to baseline 

conditions. Our results suggest that both SSP1-1.9 and SSP3-7.0 will 

result in an increase in expected annual capital losses relative to 

baseline conditions, with impacts being most severe under SSP1-1.9. 

Overall, we expect climate change to impact low-frequency events 

the most, resulting in, for example, increases in the magnitude of the 

20-year flooding event of up to 130 percent.  



 

  

71 
 

ESTIMATED CLIMATE 

CHANGE IMPACTS BY 

2041-2050 

From 2041 to 2050, we expect additional annual capital losses for 

SSP1-1.9 and SSP3-7.0 of 0.09 and 0.06 percent, respectively. When 

considering impacts from 50-year flooding events, we estimate 

capital shocks will increase from a -8.4 percent of capital loss by 

2050, to a -9.1 and -8.8 percent loss under SSP-1.9 and SSP3-7.0, 

respectively. 

 

Overview of Impact Channel 

Climate change may exacerbate flooding by increasing the frequency, intensity and duration of 

storm events. This analysis relies on projected changes in the return interval of precipitation 

events from the World Bank’s Climate Knowledge Portal. Flood hazard maps are developed to 

determine areas with a certain probability of flooding for a given baseline and climate change 

projected return period. The outputs of the flood hazard mapping include the extent and depth of 

flood inundation, which are then used to estimate damages to infrastructure. The analysis is done 

for the 2030s and 2050s eras, SSP1-1.9 and 3-7.0, and 5, 10, 20, 25, 50, and 100-year recurrence 

interval, at a spatial resolution determined by the available hydrology and infrastructure asset 

distribution data. The resulting outputs are aggregated to a national scale, and correspond to the 

expected share of capital damaged relative to a historic baseline (1995 to 2020).  

A more detailed description of the modeling methodology used is available in Appendix B, with 

Appendix C offering details on the data sources utilized in the analysis.  

Results: Climate Change Effects 

Figure 62 shows the historical riverine floodplain of the country during the baseline period and 

highlights major waterways including the Yaque del Norte River in the north, the Yaque del Sur 

in the south, and the Cuma River in the east.  
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FIGURE 62.  HISTORICAL RIVERINE FLOODPLAIN, 1981-2010  

 

Relative to baseline conditions, the SSP1-1.9 and SSP3-7.0 scenarios are projected to result in an 

increase in capital infrastructure damage by 2050, with SSP1-1.9 resulting in greater impacts. 

That said, when considering shocks from different flooding events, both the SSP3-7.0 and SSP1-

1.9 scenarios result in generally similar impacts to capital relative to the baseline period (Table 

10). While capital shocks for 10-year flooding events are relatively low at -0.6 percent and -0.9 

percent for SSP3-7.0 and SSP1-1.9 respectively, shocks are greater for the 100-year flood event, 

increasing from -10.1 percent under the baseline to to -10.4 percent and 10.6 percent for SSP3-

7.0 and SSP1-1.9 respectively.  

TABLE 10.  INLAND FLOODING SHOCK FOR THE 2050 ERA  

SSP ERA 10 YR 

RETURN 

PERIOD 

20 YR 

RETURN 

PERIOD 

25 YR 

RETURN 

PERIOD 

50 YR 

RETURN 

PERIOD 

100 YR 

RETURN 

PERIOD 

HISTORIC BASELINE 0.0% -4.6% -5.8% -8.4% -10.1% 

SSP1-1.9 2050 -0.9% -5.5% -6.6% -9.1% -10.6% 

SSP3-7.0 2050 -0.6% -5.1% -6.2% -8.8% -10.4% 

 

In the baseline period, flood risk is highest in southern areas of the country, specifically in the 

areas surrounding Santo Domingo (Figure 63). During this period, impacts to capital from inland 

flooding also extend further north and east, though are less pronounced. Overall, impacts to 

capital become more severe with more severe flooding events, with impacts from 100-year 
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flooding events in a single catchment resulting in capital losses of up to 3 percent of the total 

capital stock of the country. 

FIGURE 63.  HISTORICAL INLAND FLOODING DAMAGES (% OF TOTAL CAPITAL),  1981 -2010   

 

Generally, for 2035 to 2064, changes in the magnitude of flooding events due to climate change 

are highest in catchments located in the center of the country, specifically in the areas 

surrounding San Juan, Santiago, and La Vega. Changes tend to become less severe when moving 

further south and east (Figure 64). Impacts to capital relative to the baseline period are expected 

to be highest for more frequent events such as the 20- and 25-year flooding, with shocks 

increasing up to 27 percent in the center of the country. Increases in the magnitude of country-

wide impacts to capital are expected to decline when considering less frequent events (i.e., 50- 

and 100-year events). 
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FIGURE 64.  CHANGE IN CAPITAL LOSSES (%  CHANGE RELATIVE TO BASELIN E) ,  SSP3-7.0.  2035-2064  

 

Considering all events, the expected damages (i.e., the sum of the probability of each event times 

its magnitude) from inland flooding will worsen by -0.1 percent additional capital losses by 2050 

under SSP1-1.9. As mentioned, SSP3-7.0 is expected to result in lower incremental damages 

than SSP1-1.9, seeing about -0.07 percent additional capital losses by 2050 (see Figure 65).  
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FIGURE 65.  INLAND FLOODING SHOCK  

 

Results: Adaptation 

With the modeled effects of climate change on inland flooding in the country documented 

above, this section now looks at the effect of investing in adaptation measures. As introduced in 

Section 3.2, we consider a proactive adaptation scenario and compare it to a no-action 

baseline.  

When it comes to reducing the impacts of future inland flooding damages, there is a range of 

possible adaptation interventions that could be pursued, from zoning to prevent new 

developments in flood-prone areas, floodproofing infrastructure, or diverting floodwater away 

from at-risk areas. Our analysis considers an adaption intervention in which infrastructure is 

hardened to withstand the 20-year flood, instead of the assumed design of current infrastructure 

for the 10-year flood. 

Table 11 shows the impact of the adaptation investment on inland flooding damages compared 

to the no-action baseline by decade under SSP3-7.0. Overall, the proactive adaptation 

intervention described above is expected to reduce capital damages in each decade. The 

adaptation intervention proves to be most beneficial in the last decade from 2041 3 2050 where 

inland flooding damages under the proactive adaptation scenario are expected to decrease by 

0.025 percent relative to the no-action baseline. 
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TABLE 11.   CHANGE IN INLAND FLOODING DAMAGES UNDER THE NO -ACTION BASELINE AND 

ADAPTION INTERVENTION, SSP3-7.0  

 

ADAPTATION SCENARIO 

CLIMATE SCENARIO 

2021- 2030 2031 – 2040 2041- 2050 

NO-ACTION BASELINE -0.014% -0.039% -0.064% 

PROACTIVE ADAPTATION -0.013% -0.034% -0.039% 

 

Summary and discussion 

Climate change will likely increase the severity of flooding events in the country by mid-

century. Generally, basins in the north coast, central mountains, and eastern areas of the country 

will experience increases in flooding magnitudes i.e., higher peak precipitation events that result 

in increased reverine flood depths. Only some basins in the south-west of the country are likely 

to see reduced flood peaks. However, at a national scale, the aggregate negative impacts on 

capital due to inland flooding are expected to increase.  

Higher impacts from all design storms are likely to be experienced, but while the overall 

magnitude of a future low-frequency event such as a 100-year storm may be larger, more 

frequent events (e.g., 10-year storms) would see the biggest percent increase. And while single 

events can cause devastating economic impacts by destroying capital and disrupting economic 

activity, the marginal effect of climate change on inland flooding is limited when measured in 

expected value terms, nationally. Without proactive adaptation, an additional 0.06 percent of the 

country’s capital stock is expected to get damaged every year due to flooding. For the 100-year 

event by mid-century, incremental damages could reach up to about 0.4 percent of the capital 

stock relative to the historical baseline.  

 

4.3.2  TROPICAL CYCLONES  

SUMMARY 

SUMMARY Our work estimates the impact of climate change on hurricane 

occurrence and associated wind-related damage. Our results suggest 

that the occurrence of all hurricane types considered will increase 

relative to the baseline. By 2050, we estimate that approximately 1 

and 1.1 category 1, 2, and 3 hurricanes will occur each year under 

SSP2-4.5 and SSP3-7.0, respectively (as compared to 0.7 such storms 

per year under the baseline). We also estimate that approximately 0.2 

and 0.3 category 4 and 5 hurricanes will occur by 2050, under SSP2-

4.5 and SSP3-7.0, respectively (as compared to 0.1 such storms per 

year under the baseline). 
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ESTIMATED CLIMATE 

CHANGE IMPACTS BY 

2030-2050 

Overall, we expect annual damages to increase relative to the 

baseline, with damages highest from SSP3-7.0 in the 2050s, with 

capital shocks of approximately 2.2 percent. 

 

Overview of Impact Channel 

Tropical cyclones and hurricanes can have substantial economic consequences to the country’s 
infrastructure and population. We model the impacts of cyclones by first generating a large 

number of synthetic hurricane tracks. This is done by randomly seeding a given ocean basin with 

weak tropical cyclone-like disturbances, and using an intensity model to determine which one of 

these develops to tropical storm strength or greater. Figure 66 shows an example of hindcast 

wind speeds and paths produced by this method. For each of these tracks, we then simulate the 

storm intensity (i.e., a maximum wind speed and a radius of maximum winds) and estimate the 

incremental damages to capital value relative to the baseline period. Shocks are calculated for 

specific infrastructure types based on available data on the value and location of infrastructure 

assets.  

FIGURE 66.  HINDCAST WIND SPEEDS AND PATHS  

   

A more detailed description of the modeling methodology used is available in Appendix B, with 

Appendix C offering details on the data sources utilized in the analysis.  

Results: Climate Change Effects 
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Figure 67 illustrates peak wind speed under SSP3-7.0 for the period 2041 to 2060. Overall, most 

of the country experiences peak wind speed of around 70 knots, while areas near the coast are 

expected to experience higher peak wind speeds, ranging from 85 to 95 knots. 

FIGURE 67.   PEAK WIND SPEEDS UNDER SSP3 -7.0,  2041 –  2060  

 

Figure 68 and Figure 69 present the change in the annual occurrence of category 1-3 and 4 and 5 

hurricanes in the Dominican Republic, respectively. Overall, through 2090, both climate 

scenarios suggest that the occurrence of category 1-3 and category 4 and 5 events will increase 

relative to hindcast estimates. Among category 1-3 hurricanes, SSP3-7.0 is expected to result in 

a higher annual occurrence in the 2030s and 2050s. When considering category 4 and 5 events, 

we expect SSP3-7.0 to result in a higher annual occurrence by the 2050s. This trend is reversed 

by the 2090s.  
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FIGURE 68.  CHANGE IN ANNUAL OCCURRENCE OF HURRICANES  OF CATEGORIES  1 -3   

  

FIGURE 69.  CHANGE IN ANNUAL OCCURRENCE OF HURRICANES  OF CATEGORIES  4 AND 5   

  

Figure 70 shows the expected annual damages from all hurricane types considered through 2100. 

Overall, we expect annual damages to increase relative to the baseline, with damages highest 

from SSP3-7.0 in the 2030s and 2050s. Here, we expect capital shocks of approximately 3.5 

percent and 2.2 percent in the 2030s and 2050s, respectively.  
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FIGURE 70.  EXPECTED ANNUAL DAMAGES (%  CAPITAL SHOCK)  

  
 

Figure 71 presents a map of expected annual damages as a percentage of asset value under 

SSP3-7.0 for the period 2041 to 2060. Overall, damages are highest along the southwest and 

southeast coast, peaking at around 5 percent.  

FIGURE 71.   EXPECTED ANNUAL DAMAGE RATIO (%  OF ASSET VALUE)  UNDER SSP3-7.0,  2041-2060  

 
   

Results: Adaptation 
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With the modeled effects of climate change on tropical cyclones in the country documented 

above, this section now looks at the effect of investing in adaptation measures. As introduced in 

Section 3.2, we consider a proactive adaptation scenario and compare it to a no-action 

baseline.  

When it comes to reducing the impacts of future tropical cyclone damage, there is a range of 

possible adaptation interventions that could be pursued. Our analysis considers an adaptation 

intervention in which (1) roof connection anchors are improved and (2) connection anchor bolts 

and stiffeners are added. Overall, we assumed that these interventions cost 10 percent of the 

building value with both interventions reducing vulnerability by 50 percent. These interventions 

are applied using a benefit-cost test on a 1 km grid. We assume that two levels of adaptation can 

be implemented: (1) high adaptation, in which the benefit-cost ratio exceeds 1, and (2) medium 

adaptation, in which the benefit-cost ratio exceeds 4.  

Figure 72 shows the expected annual damages from tropical cyclones in the country (expressed 

as a percentage of the whole capital stock that is damaged in any given year over the baseline) 

for the SSP3-7.0 climate scenario. It compares the damages without adaptation, with medium 

protection, and with high protection. Without adaptation, the proportion of additional capital 

damages are expected to decline throughout the period from around 3.6 percent by 2030 to 3.1 

percent by 2090. Under medium protection, expected annual damages are estimated at 1.9, 1.8 

and 1.7 percent by 2030, 2050, and 2090 respectively. High protection is anticipated to be most 

beneficial, with capital damages projected at around 1, 0.8, and 0.7 percent by 2030, 2050, and 

2090 respectively.  

FIGURE 72.   EXPECTED ANNUAL DAMAGES FROM HURRICANES  UNDER SSP3 -7.0 WITH AND WITHOUT 

ADAPTATION  
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4.3.3  SEA-LEVEL RISE AND STORM SURGE  

SUMMARY 

SUMMARY Our work estimates the impact of sea level rise and storm surge on 

capital infrastructure using GIS analysis to intersect areas of coastal 

inundation with areas that contain infrastructure assets. We estimate 

that by 2050, sea level rise and storm surge will result in an additional 

-0.5 percent and -0.03 percent capital shock, respectively. 

ESTIMATED CLIMATE 

CHANGE IMPACTS BY 

2041-2050 

The change in mean sea level relative to baseline conditions is 

expected to increase as 2050 approaches. The spread between climate 

scenarios will continue to increase towards mid-century, with the 

highest change in mean sea level resulting from SSP5-8.5. Overall, 

by mid-century we expect the SSP3-7.0 scenario to result in a shock 

of -0.5 percent incremental capital losses. 

 

Overview of Impact Channel 

Rising mean sea levels and temporary flooding from storm surge events threaten coastal 

infrastructure and land. This analysis used a Geographic Information System to estimate the 

share of assets (i.e., capital and land) inundated under various sea-level rise scenarios. We use a 

<bathtub= approach to estimate the impacts of rising sea levels, whereby land grid cells become 

inundated as the total water level increases based on the projected sea level rise. We then 

intersected the inundated areas resulting from discrete sea level rise increments with the 

infrastructure asset classes of interest to estimate the share that gets inundated. Storm surge 

impacts were estimated similarly to the impacts from sea level rise, except for the application of 

a historical storm surge height above mean tidal levels. While the inundation associated with sea 

level rise is treated as permanent, storm surge impacts are both temporary and repairable, even 

though the cost for repair can be substantial and potentially unaffordable for property owners. In 

this way, it is akin to inland flooding and we apply depth-damage functions to estimate the repair 

costs of impacts on capital stock.  

A more detailed description of the modeling methodology used is available in Appendix B, with 

Appendix C offering details on the data sources utilized in the analysis.  

Results: Climate Change Effects 

By early-century, mean sea level is expected to increase by approximately 0.1 meters (Figure 

73), with the scenarios evaluated resulting in a -0.1 percent shock to capital stock. By mid-

century, the variance between the different climate scenarios increases, with SSP3-7.0 resulting 

in the second largest relative change in mean sea-level, at around 0.2 meters. This is associated 

with a -0.5 percent shock to coastal capital. While the change in sea level is relatively small by 

2050, by the end of the century, sea level rise is expected to increase by a magnitude of 3. By 

2100, the spread between scenarios continues to increase, with SSP3-7.0 resulting in a 0.7 meter 

increase in mean sea level. 
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FIGURE 73.  MEDIAN SEA-LEVEL RISE BY 2100  

  

Overall, impacts to capital from sea-level rise and storm surge increase consistently through 

mid-century relative to baseline conditions, with impacts from sea-level rise (versus those from 

storm surge) accounting for the majority of impacts to capital (Figure 74). However, while 

relatively smaller in magnitude compared to sea level rise, annual damage from storm surge 

events also increases in the decades leading to 2050. By 2050, impacts from sea-level rise result 

in a -0.5 percent shock to capital (i.e., an additional incremental loss of 0.5 percent of capital 

relative to the baseline), while impacts from storm surge result in an approximately -0.03 percent 

incremental shock to capital. Note that the values on the y-axis in Figure 74 correspond to an 

increase in damages, hence a negative shock.  
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FIGURE 74.  CAPITAL SHOCK FROM SEA LEVEL RISE  AND STORM SURGE,  RELATIVE TO 2020  

 

Results: Adaptation 

With the modeled effects of climate change on sea-level rise and coastal tidal levels documented 

above, this section now looks at the effect of investing in adaptation measures. As introduced in 

Section 3.2, we consider a proactive adaptation scenario and compare it to a no-action 

baseline. When it comes to reducing the impacts of future sea-level rise and coastal tidal levels, 

a variety of possible adaptation interventions could be pursued, from planned retreat, to zoning 

to prevent new developments in at-risk coastal areas, to elevated buildings, floodwalls, or 

pumping and drainage systems.  

In this study, we consider an adaptation strategy where any new infrastructure built in the future 

is located at an elevation that is above the projected sea level by 2050 under the SSP3-7.0 

climate scenario. This not only protects new structures from anticipated changes in sea level by 

2050, but by building at higher elevations, damages from coastal tidal levels to new buildings 

will also be reduced. We assume this adaptation strategy commences in 2025. The rate of new 

infrastructure constructed is modeled to mirror the population growth rate of Santo Domingo, as 

reported by the United Nations World Urbanization Prospects (2018).   

We also consider an adaptation strategy where sea walls are built to protect the structures with 

the highest annual expected damage under SSP3-7.0 by 2050. This strategy is assumed to cost 

15 percent of a structure’s value and reduces vulnerability by 80 percent. Adaptation is applied 
using a benefit-cost test, where benefits equal mean expected avoided damages over a 20-year 

planning horizon and costs equal the value of a structure as a share of national capital stock. 

Two adaptation levels are considered: high adaptation wherein adaptation is applied when the 

benefit-cost ratio exceeds 1 and medium adaptation wherein adaptation is applied only when the 

benefit-cost ratio exceeds 4.  
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Table 12 shows the different adaptation interventions evaluated for this channel, focusing on 

ensuring new infrastructure is built away from the most hazardous areas as well as protecting 

existing infrastructure. 

TABLE 12.   ADAPTATION SCENARIOS AND INTERVENTIONS EVALUAT ED  

ADAPTATION INTERVENTION 

SCENARIO 

NO-ACTION 

BASELINE 
PROACTIVE ADAPTATION 

Building new infrastructure 

above the projected sea level 

change by 2050 
No change 

Build all new structures above the projected sea level 

change by 2050 for SSP3-70, starting in 2025 

Building sea walls to protect 

the highest-risk structures 

Medium: apply adaptation 

when benefit-cost ratio 

exceeds 4 

High: apply adaptation 

when benefit-cost ratio 

exceeds 1 

 

Figure 75 shows the expected annual damages from coastal flooding in the country (expressed as 

a percentage of the whole capital stock that is damaged in any given year over the baseline) for 

the SSP3-7.0 climate scenario. It compares the damages without adaptation, with medium 

protection, and with high protection. Without adaptation, the proportion of additional capital 

damages from coastal flooding are projected to quadruple, from around 0.0008 percent above 

baseline in the 2030s to around 0.003 percent above baseline in the 2050s. Medium protection 

(i.e., applying adaptation when the benefit-cost ratio exceeds 4) does not alter the projected 

damages as compared to the without adaptation case. High protection (i.e., applying adaptation 

when the benefit-cost ratio exceeds 1) has a significant and immediate impact, with capital 

damages projected at around 0.015 percent below baseline in the 2030s, 2040s, and 2050s.  
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FIGURE 75.   EXPECTED ANNUAL DAMAGE FROM COASTAL FLOODING UNDER SSP 3-7.0  WITH AND 

WITHOUT ADAPTATION  

 
 

Summary and discussion 

An increase in sea level due to climate change will result in negative shocks to capital in the 

Dominican Republic, as coastal infrastructure is permanently flooded and a larger share gets 

exposed to surge events. Overall, the annual expected impact of permanent inundation is much 

higher than surge events, accounting for more than 90 percent of the total effect.  

By 2050, variability in the expected shocks is limited due to a small range of potential changes 

in sea level, with median projections around 0.2 meters across all SSPs. However, by 2100, sea-

level rise could reach around 0.7 meters under SSP3-7.0, ranging between 0.4 and 0.8 meters 

across SSPs for the median projection. As such, the greatest impacts from sea-level rise and 

surge events that result in coastal flooding should be expected by late-century.  

 

4.3.4  TOURISM  

SUMMARY 

SUMMARY Our work estimates the effect of climate change on tourism revenues 

by considering how changes in average climatic conditions will 

impact arrivals from domestic and international travelers. Across four 

climate scenarios, we estimate that tourism revenues will experience 

shocks ranging from -7 percent to -16 percent by mid-century. When 

considering the impact of hurricanes on tourism we estimate that by 

2050, tourism arrivals may decline up to 6 percent.  
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ESTIMATED CLIMATE 

CHANGE IMPACTS BY 

2041-2050 

Generally, the Dry/Hot mean scenario is expected to result in the 

harshest impacts to tourism revenues throughout the period to 2050. 

Impacts from the Wet/Warm mean scenario oscillate, with shocks 

from the two means converging by mid-century: the Wet/Warm mean 

results in a -15 percent shock and the Dry/Hot mean results in a -16 

percent shock. 

 

Overview of Impact Channel 

Climate change may affect tourism through disruptions caused by increased frequency and 

magnitude of extreme events (e.g., flooding or tropical cyclones), as well as from changes in the 

suitability or attractiveness of a particular location for travelers. Our analysis relies on estimates 

of total tourism revenues generated from domestic and international travelers, as well as from 

business and leisure travelers. We utilize data on the total number of travelers and revenue per 

traveler to distribute tourism revenues to grid cells covering the whole country using the location 

of tourist points of interest.  

Impacts on leisure revenues due to changes in average climatic conditions are estimated 

following the approach developed by Hamilton, Maddison, and Tol (2005), which was also 

applied by Roson and Sartori (2016). Work by Hamilton et al. identified a functional 

relationship between mean annual temperature and total visitor arrivals and departures. This 

work suggests that arrivals peak around 14°C and decline as temperature increases, which 

indicates that international travelers prefer more pleasant (i.e., less hot) destinations. Departures 

reach a minimum at 19°C and increase with higher temperatures following the same logic as 

international travelers.  

We consider the percent change in total arrivals as a proxy for the percent change in revenues 

from international leisure travelers. If available, we utilize seasonal or monthly visitation 

statistics to weigh monthly temperature and estimate a relevant mean annual temperate (i.e., a 

temperature value that weighs higher in the months with higher demand) to quantify the change 

in arrivals. For changes in domestic leisure travelers, we consider the percent change in total 

departures, which results in a decrease in revenues from an increase in departures (i.e., as a 

region gets hotter, residents will prefer more pleasant locations elsewhere). 

A more detailed description of the modeling methodology used is available in Appendix B, with 

Appendix C offering details on the data sources utilized in the analysis.  

Results: Climate Change Effects 

Figure 76 describes the proportion of tourism revenues generated by traveler type and purpose. 

The majority of tourism revenue in the country is generated from international travelers 

participating in leisure travel in Punta Cana or in other parts of the country. 



 

  

88 
 

FIGURE 76.  SHARE OF TOURISM REVENUE,  2019  

 

Relative to baseline conditions, climate change is expected to reduce tourism revenues generated 

from both domestic and international leisure travelers (Figure 77). For domestic travelers and 

international travelers, the Dry/Hot mean scenario results in more severe impacts compared to 

the Wet/Warm mean scenario through 2050. For domestic travelers, the Wet/Warm and Dry/Hot 

mean scenarios are expected to result in a -4.5 percent and -5.5 percent shock by mid-century, 

respectively. We estimate that revenue impacts from international travelers are more pronounced 

throughout the period to 2050 when compared to impacts from domestic travelers. Here, the 

Wet/Warm mean scenario is expected to result in a tourism revenue shock of -15 percent, while 

the Dry/Hot mean scenario results in a shock of -20 percent by 2050. 
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FIGURE 77.  CHANGE IN REVENUE FROM LEISURE TRAVELERS  

 

Overall, as shown on Figure 78, the Dry/Hot mean scenario represents a worst-case scenario, 

projected to result in the most severe impacts to tourism revenues throughout the period to 2050. 

By 2030, the Wet/Warm mean, SSP1-1.9 mean, and SSP3-7.0 mean scenarios result in similar 

shocks of around -6 percent. When considering individual GCMs (i.e., the grey-shaded range in 

Figure 78), tourism shocks range from around 1 percent to -12 percent by 2030. By mid-century, 

the spread between the four scenarios increases, with shocks ranging from about -7 percent to -

16 percent. Across GCMs, revenue shocks range from -13 percent to -18 percent by 2050.  
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FIGURE 78.  TOURISM REVENUE SHOCK, 3-YEAR MOVING AVERAGE  

 
 

Our analysis also considers the impact of increased wind speeds and hurricane occurrence on 

tourism arrivals to the country. Currently, the majority of inbound tourists arrive to the country 

by plane, with around 85 percent arriving on aircrafts and 15 percent arriving by water 

(UNWTO 2021). Yet, potential increases in wind speeds might impact airplane arrivals by 

delaying or cancelling air travel. Specifically, when crosswinds exceed an identified threshold, 

flights are unable to safely depart and land. Maximum crosswind thresholds can vary by aircraft 

type and airport, however, these values generally range from around 10 to 35 knots (Arnot 

2019). Further, in the United States, METerological Aedrome Reports are used to communicate 

information on potentially adverse meteorological conditions, including high wind speeds to 

pilots and aircraft operators. When maximum wind speeds exceed 25 knots, this phenomenon is 

flagged in associated METerological Aedrome reports (FAA 2017). In our analysis, we consider 

the number of days per month when wind speeds are expected to reach or exceed this threshold. 

Additionally, tourism arrivals can be negatively impacted by hurricane events which may 

prevent departures and damage critical transportation infrastructure in a country. Therefore, our 

analysis also considers the expected change in annual hurricane occurrence to estimate potential 

impacts to tourism through the end of the century. 

Table 13 shows the average number of days per month and the maximum days per month when 

winds are estimated to reach 25 knots in the baseline from 1995-2014. When considering the 

average number of days per month when wind speeds exceed 25 knots in the 95th percentile, 

only a small subset of months, namely August and September, are impacted (with these months 
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having 0.16 and 0.60 such days respectively). When considering the maximum number of days 

across the country by month, we anticipate around 1.5 days in August, 2 days in September, and 

0.5 days in October.  

TABLE 13.   DAYS PER MONTH WITH WIND SPEEDS GREATER THAN 25  KNOTS IN THE 95 T H  

PERCENTILE,  1995-2014  

MONTH  1 2 3 4 5 6 7 8 9 10 11 12 

AVERAGE 

NUMBER OF 

DAYS/MONTH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.60 0.00 0.00 0.00 

MAX NUMBER 

OF 

DAYS/MONTH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.56 2.10 0.52 0.00 0.00 

 

Moving from baseline conditions, we next examine projected future wind conditions, under 

SSP2-4.5 and SSP3-7.0. When considering the maximum number of days per month in the 95th 

percentile under SSP2-4.5, impacted months span from August through October in the period 

from 2021- 2040 (see Table 14). During this period, parts of the country will experience an 

additional day above 25 knots in August, nearly two additional days in September, and an 

additional 1.23 days in October. Under SSP3-7.0, impacts are relatively similar for this same 

time period, with impacted months spanning from August through October, with August and 

September experiencing an additional 1.40 days above 25 knots and October experiencing an 

additional 0.83 days. While the number of additional impacted days is relatively small, this 

change represents a doubling in the annual number of days during which wind speeds exceed 25 

knots relative to the baseline and subsequently, this may have important consequences on air 

travel to the country and associated tourism expenditure.  

TABLE 14.    CHANGE IN THE NUMBER OF DAYS PER MONTH WITH WIND SPEEDS GREATER THAN 25  

KNOTS IN THE 95T H  PERCENTILE UNDER SSP2 -4.5 AND SSP3-7.0 IN  2021-2040 RELATIVE 

TO THE BASELINE  

SSP  MONTH  1 2 3 4 5 6 7 8 9 10 11 12 

SS
P
2
-4

.5
 

AVERAGE 

NUMBER OF 

DAYS/MONTH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.43 0.05 0.00 0.00 

MAX NUMBER 

OF 

DAYS/MONTH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.02 1.80 1.23 0.00 0.00 

SS
P
3
-7

.0
 

AVERAGE 

NUMBER OF 

DAYS/MONTH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.09 0.03 0.00 0.00 

MAX NUMBER 

OF 

DAYS/MONTH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.40 1.41 0.83 0.00 0.00 
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Further, impacts from hurricanes can also lead to immediate impacts on tourism arrivals. 

Research from 2013 suggests that an average hurricane strike can cause a 2 percent decline in 

tourism arrivals (Granvorka 2013). Consistently with the assumptions used in impact channel 

analysis above, a 1 percent decline in arrivals would translate to a 0.73 percent decline in total 

tourism revenues (see Figure 76), assuming domestic travel is not disrupted. In the baseline 

period, if all projected category 0 through 5 hurricanes do in fact occur, this would result in 

approximately 1.89 hurricane events (see Table 15). Thus, this may be associated with a decline 

of 3.78 percent in tourism arrivals or roughly 270,000 passengers assuming 2019 levels of 

tourism arrivals to the country (Central Bank of the Dominican Republic 2019). Following this 

same logic, immediate impacts to tourism arrivals would peak in the 2030s under SSP3-7.0 with 

approximately 2.98 hurricane events per year, translating to a nearly 6 percent decline in tourism 

arrivals or a decrease of 425,000 passenger trips. However, other research also suggests that 

hurricane events may be accompanied by a recovery in tourism through an increase in airplane 

arrivals that may result in a net positive effect on tourism (Carballo Chanfon et al. 2021). Thus, 

the net impact of hurricanes on tourism may vary depending on hurricane type and associated 

damage.  

TABLE 15.   ANNUAL EXPECTED HURRICAN EVENTS BY PERIOD AND IMPACT ON TOURISM ARRIVALS  

  
2030 

 
2050 

 
2090 

 

CATEGORY BASELINE SSP2-45 SSP3-70 SSP2-45 SSP3-70 SSP2-45 SSP3-70 

CAT 0 (TROPICAL STORMS) 1.12 1.49 1.51 1.43 1.40 1.34 1.28 

CAT 1 0.44 0.55 0.63 0.68 0.69 0.51 0.56 

CAT 2 0.16 0.25 0.40 0.16 0.24 0.24 0.16 

CAT 3 0.07 0.14 0.19 0.16 0.18 0.16 0.19 

CAT 4 0.06 0.17 0.19 0.14 0.25 0.28 0.14 

CAT 5 0.04 0.08 0.06 0.11 0.12 0.13 0.12 

POTENTIAL DECLINE IN 

ARRIVALS 

 
3.78% 

 
5.36% 

 
5.97% 

 
5.35% 

 
5.77% 

 
5.34% 

 
4.88% 

 

In addition to immediate impacts, hurricanes may also result in prolonged effects to tourism 

arrivals that extend outside of the days following the initial hurricane landfall. For cruise ship 

arrivals to the Caribbean, Carballo Chanfon et al. (2017) find hurricanes are associated with a 

1.21 percent decline in arrivals in the month following the hurricane landfall. Further, for more 

intense events, research suggests that the cleanup period following category 4 and 5 hurricanes 

may extend up to 5 months following the initial landfall, and also result in a recovery period of 

up to 20 months (BuildFax 2017). In the Dominican Republic, we estimate an annual occurrence 

of 0.10 for category 4 and 5 events in the baseline. Yet, by 2050, under SSP2-4.5 and SSP3-7.0, 

the expected annual occurrence of these types of events more than doubles to approximately 

0.25 and 0.37 events respectively. This increase relative to the baseline may be associated with 

prolonged clean-up periods and recovery times. In turn, this may discourage tourism arrivals as 

vital mechanical, electrical, and plumbing infrastructure is still being restored.  
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Summary and discussion 

Overall, our results suggest that climate change related effects, specifically, changes in 

temperature, wind speed, and hurricane occurrence may negatively impact tourism arrivals by 

making locations less desirable and potentially reducing tourism arrivals to the country. Previous 

work has also aimed to estimate the impacts of climate change in the Caribbean and generally 

finds negative impacts to tourism in the region. Specifically, research by Sookram (2009) 

considers how tourism demand and revenues in the Caribbean will change under different 

emissions scenarios through a tourism demand model. They estimate that tourism losses for the 

nine Caribbean countries considered could range from $111.3 to $116.3 million by 2050 due to 

changes in temperature and precipitation (Sookram 2009). When also considering extreme 

events (e.g., increases in the frequency of hurricanes, windstorms, floods, and landslides), 

impacts increase to anywhere between $15,503 and $14,950 million by 2050 (Sookram 2009). 

While our analysis does not explicitly explore any adaptation measures to help minimize these 

impacts on the country’s tourism industry, future work could evaluate such interventions. As 

presented in the textbox below, nature-based solutions are an important group of actions that can 

help reduce the impacts of a changing climate on the Dominican Republic’s valuable natural 

resources such as coral reefs and wildlife habitat, and thus on its tourism industry.  
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Textbox: Nature-Based Solutions 

 

Given the estimated impacts of climate change on tropical cyclone occurrence and subsequent 

damage to the tourism sector, it is important to consider the role of nature-based solutions in helping 

to mitigate estimated impacts. Overall, several strategies might be useful when seeking to limit 

climate change related impacts to coastline environments. Yet, in the Caribbean, strategies aimed at 

increasing mangrove and coral reef ecosystems are most discussed in relevant literature. By 

preventing impacts from waves and storm surges from reaching the coastline, these environments 

can provide important ecosystem services. Specifically, research from 2016 estimates that coral reefs 

may reduce wave heights by 70 percent while mangroves may reduce heights by 31 percent 

(Siddharth et al., 2016). Further, a global analysis by Beck et al. 2018 found that without coral reef 

ecosystems, global expected damages from flooding may double while damages from storm surges 

may triple. In the Dominican Republic, it is estimated that $96 million in damages are averted 

annually due to the presence of coral reefs or approximately 0.11 percent of GDP (Beck et al. 2018). 

Generally, these benefits are concentrated in the eastern regions of the country where avoided 

damages peak at around $50 million (see Figure 69). 

Figure 69. Value of Coral Reefs for Flood Protection 

 

 

 

 

 

 

 

 

 

 

 

Source: Beck et al., 2018 

Further, work from Rozenberg et al. 2021 found that mangrove ecosystems may be useful in limiting 

economic impacts associated with hurricane events in the Caribbean, with hurricane impacts 

declining with increased mangrove width. Investment in restoration efforts of these ecosystems may 

prove to be efficient as research from Beck et al. 2022 suggests that coral reef and mangrove 

restoration efforts could be cost effective and result in a benefit cost ratio greater than 15:1 in some 

parts of the country (Beck et al. 2022).  
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5. SUMMARY AND CONCLUSIONS  

5.1  SUMMARY  

The objective of this report is to outline the process and present the results of estimating the 

economic damages of climate change for the Dominican Republic. This analysis helps provide a 

better understanding of the benefits and costs of climate action and cross-sectoral policy 

priorities to manage climate risks effectively. 

Across the channels considered, the Dry/Hot and Wet/Warm mean scenarios are anticipated to 

result in varying degrees of impact by mid-century. When looking at impacts to labor 

productivity, as evaluated through the labor heat stress, human health, and water supply and 

sanitation channels, the Dry/Hot mean scenario is generally expected to have harsher impacts on 

labor productivity compared to the Wet/Warm mean scenario, though relative differences are 

small. The Dry/Hot mean scenario is anticipated to result in a larger shock as compared to the 

Wet/Warm mean scenario for the labor heat stress and human health channels. Differences 

between the mean scenarios is also expected to be small for the water supply and sanitation 

channel, with both scenarios resulting in similar shocks to labor supply under the business-as-

usual and aspirational policy scenarios. Additionally, for the tourism channel, differences 

between the Dry/Hot and Wet/Warm mean scenario are relatively small by mid-century with the 

Dry/Hot mean scenario resulting in a 2 percent larger shock. 

Differences between the two scenarios is more pronounced for the water supply, crop 

production, and hydropower channels. For the water supply channel we anticipate unmet 

irrigation demand will be 15 percent larger under the Dry/Hot mean scenario as compared to the 

Wet/Warm mean scenario. When considering crop production, the Dry/Hot mean scenario 

results in a 20 and 13 percent larger shock for rainfed and irrigated crops respectively, as 

compared to the Wet/Warm mean scenario. In contrast, for the erosion channel, the Wet/Warm 

mean is anticipated to result in more severe impacts to erosion and crop production as compared 

to the Dry/Hot mean scenario. For the inland flooding channel, differences in climate change-

related impacts across the different climate scenarios is also expected to be varied. For example, 

by the 2050s, we estimate inland flooding shocks ranging from 0.08 to 0.12 percent. Similarly, 

for the sea-level rise channel, selected climate scenarios are expected to result in similar levels 

of sea-level rise by mid-century.  

When it comes to adaptation interventions, the analysis explored the effect of several adaptation 

strategies that might help mitigate climate change related impacts. For the labor heat stress 

channel, we explored the impact of increasing air-conditioning coverage by 20 percent and 30 

percent on labor productivity. Within this channel, investment in air-conditioning is expected to 

have the greatest impact on the industrial sector, followed closely by the services sector. While 

increased air-conditioning does reduce the shock experienced by the agriculture sector, the 

magnitude of this positive effect is much smaller than for industry and services.  
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For the crop production channel, we explored the effect of developing new irrigation 

infrastructure, reducing unmet irrigation demand, crop switching to more climate-resilient crops, 

increasing the share of heat-tolerant crop varieties, and a combination of these individual 

strategies. Overall, the majority of strategies resulted in crop production shocks similar to the 

no-action baseline. However, investments aimed at increasing irrigation, reducing unmet 

irrigation demand, and employing a combination of all interventions appear to be most effective 

in reducing shocks relative to the no-action baseline, with positive shocks (i.e., production gains) 

highest under the Wet/Warm mean scenario. 

For the water supply channel we explored the affect of increasing irrigation efficiency from a  

baseline of 20 percent to 40 percent and an increase in reservoir volume by 30 percent. With 

adaptation, our results suggest unmet irrigation demand is expected to decrease up to 20 percent 

in selected basins. For the erosion channel, we considered the impact of conservation tillage, 

increased use of crop residues, and a combination of conservation tillage and crop residue use. 

Overall, under the Dry/Hot mean scenario, all three strategies proved to be effective when used 

at the <low= adaptation rate. For the inland flooding channel, our analysis considers an adaption 

intervention in which infrastructure is hardened to withstand the 20-year flood, instead of the 

assumed design of current infrastructure at the 10-year flood. Overall, the strategy proved to be 

effective, with impacts under the proactive adaption scenario declining relative to the no-action 

baseline by mid-century. 

For the tropical cyclone channel, we explored the impact of roof connection anchors being 

improved and connection anchor bolts and stiffeners being added. Overall, relative to the no-

action baseline, we expect medium adaptation to result in the largest reduction in damages by 

2090. Finally, for the sea-level rise channel, adaptation interventions targeted at building new 

infrastructure away from hazardous areas and protecting existing infrastructure were evaluated. 

Overall, we found the high adaptation scenario to be most effective at reducing impacts by mid-

century.  

5.2  CONCLUSIONS  

Our analysis helps to quantify the effect climate change may have on human capital, agriculture 

and natural resources, and infrastructure and services in the Dominican Republic by mid-

century. While our analysis works to fill a gap in climate change research, further work to 

quantify climate change related impacts across additional channels will help provide further 

guidance to stakeholders on how to manage climate risks effectively moving forward. 
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APPENDIX A.  CLIMATE DATA AND SCENARIO SELECTION  

The evaluation of climate change impacts conducted in this study required climate information 

as an input to the modelling process. This appendix details the process of generating and 

processing the necessary climate scenarios.  

A1 .  GLOSSARY OF KEY TERMS  

Climate projections: Simulated response of the climate system to a scenario of future emissions 

or concentrations of greenhouse gases (GHGs) and aerosols, and changes in land use.  

Global Climate Model (GCM), also General Circulation Models: A modeled representation of 

the physical relationships of the global climate system that are used to generate climate 

projections. These capture atmospheric and ocean dynamics, and other water and 

biogeochemical cycles. Typical outputs include variables such as precipitation and temperature. 

Emission scenarios: A plausible representation of the future development of emissions of 

substances that are radiatively active (e.g., GHGs, aerosols). These are used in the form of 

illustrative Representative Concentration Pathways (RCPs).  

Representative Concentration Pathways (RCPs): Scenarios of emissions and concentrations 

of GHGs, aerosols, and land use/land cover. They represent different intensities in the additional 

radiative forcing caused by human activities. 

Shared Socioeconomic Pathways (SSPs): Different possible evolutions of the world in terms of 

demography, technology, economy, etc., with these socioeconomic conditions in turn achieving 

certain RCPs. 

A2 .  CLIMATE DATA AND PROJECTIONS USED  

To develop climate scenarios and future projections, historical and future projected datasets were 

obtained, with precipitation and temperature the main variables of interest for this study. 

Historical monthly climate data was obtained for 1950 to 2020 from the Climatic Research Unit 

(CRU) gridded Time Series of the University of East Anglia (CRU TS 4.05) (Harris et al. 2020). 

These data are available from 1959 to 2020 at a spatial resolution of 0.5 x 0.5 degree grids and 

monthly temporal resolution for various variables including mean, maximum and minimum 

temperature, and total precipitation. 

Future climate projections were obtained from the World Bank’s Climate Change Knowledge 
Portal for 29 GCMs from the Coupled Model Intercomparison Project 6 (CMIP6) suite of 

Intergovernmental Panel on Climate Change (IPCC) model outputs (World Bank 2021). This 

large suite of GCMs was run for a set of emissions scenarios, as shown in Figure A79. 
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FIGURE A79.  CMIP6 SSPs  (SHADED AREA SHOWS RANGE OF NO -POLICY BASELINE SCENARIOS)  

 
Notes: Interactive version with more data available at Carbon Brief: https://www.carbonbrief.org/cmip6-the-next-

generation-of-climate-models-explained 

Table A1 shows a comprehensive list of the available data utilized for this project organized by 

GCM and Historical data/SSP. Each GCM has up to five combinations of SSP and RCP 

emissions scenario runs, including SSP 1-RCP 1.9 (1-1.9), 1-2.6, 2-4.5, 3-7.0, and 5-8.5. For 

each GCM-SSP combination, the Climate Change Knowledge Portal provides a modeled history 

from 1995 to 2014 and projections from 2015 to 2100. For the selection of climate scenarios, we 

employed 31 GCMs, originally provided at a spatial resolution of 1 x 1 degree grids for the 

globe and monthly temporal resolution for years 1995 to 2100 and monthly mean daily 

temperature and monthly total precipitation. 

https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained
https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained
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TABLE A1.  LIST OF GCMs  AND THE ASSOCIATED SSPs  AVAILABLE FOR THIS STUDY  

 

A3.  PROCESSING OF CLIMATE INFORMATION  

Given that GCMs are biased relative to observed climate conditions, we applied the bias-

correction and spatial disaggregation technique to disaggregate the projections to 0.5 x 0.5 

degree grid cells, and to then bias correct these projections using the observed historical dataset 

from 1995 to 2000 from the CRU TS 4.05 dataset. For each grid cell, the bias correction 

procedure sets up <quantile maps= for each month to statistically compare the GCM hindcast to 

the CRU observations, and then uses those maps to bias correct all projections. This approach 
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was previously applied in the World Bank’s Enhancing the Climate Resilience of Africa’s 
Infrastructure study (Cervigni et al. 2015), using the CMIP5 ensemble.  

We use standard spatial downscaling practice to reduce the spatial resolution from 1 x 1 degree 

grids to 0.5 x 0.5 degree grids and properly line the data up with the historical data, both reduced 

to the 67,420 CRUs of the CRU TS 4.05 data covering the land area of the globe. This includes 

the following steps for each file: 

1. Obtain the raw data (resulting spatial dimensions are 181 latitude x 360 longitude).1   

2. Perform Inverse Distance Weighting with a multiplier of 2, power of 2, and radius of 2 

to increase the resolution to 0.5 x 0.5 degree (resulting spatial dimensions are 362 

latitude x 720 longitude). 

3. Remove the 1st and 362nd latitude rows, because centroids of the original 181 one-degree 

latitude bands range from -90 to +90, which means that latitude bands at -90 and +90 are 

each only 0.5-degree rather than 1-degree. As a result, removing the 1st and 362nd 

reduces the size of these bands to 0.5 degree (resulting spatial dimensions are 360 

latitude x 720 longitude). 

4. Reduce and vectorize the data to the 67,420 CRUs covering the land areas of the glove 

(resulting spatial dimensions are 67,420 CRUs). 

Figure A80 presents a visual representation of a few of these steps for a (randomly selected) 

scenario, namely access-cm2 SSP2-4.5.  

FIGURE A80.  SPATIAL DOWNSCALING METHODOLOGY FOR ACCESS -CM2 SPP2-4.5  

Pane l  A.  Resu l t  of  Step  1  

 

 
1
 The raw data from the World Bank has a spatial resolution of 181 latitude x 361 longitude.  Based on 

communication with the Climate Change Knowledge Portal team, we removed the 361st longitude column 
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Pane l  B.  Resu l t  of  Step  3  

 

Pane l  C.  Resu l t  of  Step  5  

 

A4.  SELECTION  OF CLIMATE SCENARIOS  

For this study, we analyzed the available set of GCM/SSP permutations previously shown in 

Table A1 to obtain a subset of scenarios that represent an appropriate range of possible future 

climate conditions. In particular, we consider two different sets of climate futures: one to assess 

the impact of uncertain global mitigation efforts and one to assess local climate risks and 

overall model uncertainty.2 While scenarios that capture model uncertainty are relevant for any 

impact channel, certain inputs may be limited to SSP aggregates only. In those cases, the 

analysis relies on scenarios of global mitigation efforts alone.  

The first set of scenarios (i.e., scenarios selected to allow for comparisons across emissions 

trajectories - referred as mitigation scenarios) are selected in accordance with World Bank 

guidance which recommends selecting an optimistic and a pessimistic scenario of GHG 

 
2
 Climate model uncertainty: Diverse GCMs have been developed drawing on the best available science. These 

continue to evolve, and while sophisticated, they remain imperfect tools. Each model is unique and generates slightly 
different projections, even when run using identical greenhouse gas emissions scenarios. 
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concentrations that are driven by global GHG emissions trajectories and mitigation policies.3 For 

these, we use the SSP3-7.0 ensemble mean as a pessimistic case and the SSP1-1.9 ensemble 

mean as an optimistic case. SSP1-1.9 represents reductions in GHG emissions in line with 1.5°C 

warming by 2100. SSP3-7.0 is a scenario in which warming reaches 4°C by 2100, due to lax 

climate policies or a reduction in ecosystems and oceans’ ability to capture carbon.  

For the second set of scenarios (i.e., scenarios selected to assess overall model uncertainty), we 

select a subset of extreme GCM runs that represent a <dry and hot= and a <wet and warm= future 
for the country under analysis, for the study period between 2020 and 2050. This process is 

made up of the following steps: 

1. Calculate country-scale changes in mean annual temperature and mean total 

precipitation between 2031 and 2050 versus the historical baseline of 1995 to 2020. 

2. Consider GCMs within the SSP2 and SSP3 ensembles (about 50 total), as potential 

candidates for extreme conditions. This eliminates from consideration the aggressive 

mitigation pathway (SSP1) and the aggressive emissions pathway (SSP5). 

3. Select three hot/dry scenarios around the 10th percentile of change in mean precipitation 

(i.e., dry) and 90th percentile change in mean temperature (i.e., hot), across all GCMs 

(within SSP2-4.5 and 3-7.0). Compute a 4th scenario as the mean across the 3 selected 

GCM/SSP runs. 

4. Select three wet/warm scenarios around the 90th percentile of change in mean 

precipitation (i.e., wet) and 10th percentile change in mean temperature (i.e., warm), as 

above, and a 4th scenario as the mean.  

Figure A81 shows a visual representation of these steps for an illustrative country. 

 
3
 Feb 3, 2022 World Bank Guidance on <Global scenarios for CCDR analyses= 
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FIGURE A81.  CLIMATE SCENARIO SELECTION PROCESS  

Pane l  A.  Resu l t  of  Step  1  

 

Pane l  B.  Resu l t  of  Step  3  and 4  

 



 

  

107 
 

A5.  DAILY INTERPOLATION OF MONTHLY DATA  

Climate data from the Climate Change Knowledge Portal is available at a monthly timestep. 

However, many of the biophysical models used in this study rely on daily temperatures and 

precipitation. For the selected climate projections as well as historical baseline, we interpolate 

the already downscaled and bias-corrected monthly data to a daily timestep using a historical 

hindcast from 1948 to 2008 at a 05 x 0.5 degree gridded resolution from the Terrestrial 

Hydrology Research Group from Princeton University (Li, Sheffield, and Wood 2010). The 

process considers the following steps: 

 For each 0.5 x 0.5 grid cell, we group the daily hindcast by month, for each of the 

twelve months. 

 Then, we sort each month’s data into quantiles based on the corresponding month’s total 

precipitation or average temperature. 

 For each month in the monthly data from the Climate Change Knowledge Portal, we 

find the quantile that month falls into and randomly select a daily value to use based on 

that month’s daily variability.  

A6.  RESULTS OF THE CLIMATE SCENARIO SELECTION PROCESS  

Figure A82 shows the results of the climate scenario selection process. The scatterplot shows the 

distribution of SSP/GCM combinations based on changes in temperature and precipitation, 

highlighting those that were selected (including the ensemble mean scenarios for reference).  
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FIGURE A82.  GCM SELECTION RESULTS FOR DRY/HOT AND  WET/WARM FUTURES  

 

TYPE # SSP GCM 

Dry / hot future 1 SSP2-4.5 TAIESM1 

2 SSP3-7.0 KACE-1-0-G 

3 SSP2-7.0 IPSL-CM6A-IR 

Wet / warm future 4 SSP2-4.5  CMCC-CM2-SR5 

5 SSP2-4.5  NORESM2-LM 

6 SSP3-7.0  CMCC-CM2-SR5 

 

Trajectories of changes in temperature and precipitation for the selected scenarios are presented 

in Figure A83 for the mean scenarios (i.e., ensemble means and dry/hot and wet/warm means). 

Figure A84 presents the trajectory of specific SSP/GCM combinations. Finally, maps that show 

spatial changes in temperature and precipitation are presented in Figure A85. 
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FIGURE A83.  MEAN TEMPERATURE ( °C )  AND PRECIPITATION (%)  CHANGE TRAJECTORIES  
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FIGURE A84.  GCM TEMPERATURE ( °C )  AND PRECIPITATION (%)  CHANGE TRAJECTORIES  
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FIGURE A85.  GCM TEMPERATURE ( °C )  AND PRECIPITATION (%)  CHANGE BY 0.5 DEGREE GRID CELL, 

2031-2050 VS 1995-2020  

Pane l  A:  Temperature  

 

Pane l  B:  Precip i tat ion  
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APPENDIX B: IMPACT CHANNEL METHODS  

B.1  INTRODUCTION  

Climate change impacts on the country’s economy are modeled through impact channels. The 
impact channels considered in this study are summarized in Chapter 2 of the main report. For 

each channel, shocks to macroeconomic inputs are generated for future climate projections under 

multiple scenarios - these are presented in Chapter 3 of the main report. Chapter 4 of the main 

report briefly describes how each impact channel was modeled and presents results for each 

channel. This appendix presents further technical detail on the analytical approach used to model 

each channel, including a description of the limitations of the methodology. Appendix C 

presents an overview of the specific data sources used to evaluate each impact channel.  

B.2  HUMAN CAPITAL  

Climate change may reduce human capital through increases in extreme temperatures that result 

in excess mortality and reduced labor capacity, as well as by facilitating the spread of infectious 

diseases as larger areas experience favorable climatic conditions, which in turn cause excess 

mortality and increased disease incidence on the population. We estimate these effects through 

the following channels: 

• Labor heat stress: which models changes in the ability of labor to perform work as 

workday temperatures increase in the future. 

• Human health: which models changes in the incidence and mortality of vector-borne 

(malaria and dengue), water-borne (i.e., cholera, dysentery, etc.), and heat-related 

diseases as local temperatures and precipitation levels and patterns change in the future.  

In addition, both the coverage and the quality of basic services can play a significant role in the 

overall prevalence of certain diseases in the population. While these changes respond to policy 

decisions rather than to changes in climate, their effect is intertwined with human health effects 

and can either mitigate the effects of climate change or generate additional co-benefits. We 

consider the following channels to model these effects: 

 Water, sanitation, and hygiene (WASH): which models the effects of improved 

WASH coverage on the incidence of diarrheal diseases. 

Labor supply model 

All the channels mentioned above impact labor. Heat stress reduces the productivity of labor by 

reducing the effective number of hours a person can perform work, while human health and the 

associated policy channels impact total labor supply by way of changes in death and incidence of 

diseases. In order to calculate these effects, we model the total labor hours in the country, which 

we then shock from each effect.  
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First, we obtain annual population estimates for both history and projected future by sex and age, 

considering population ages 15 to 64 as the working age population (OECD 2023). When 

available, we use both historical and projected future labor force statistics. If such statistics are 

not available, we apply available labor participation rates by sex to estimates of the working age 

population to compute the total labor force. The labor force is multiplied by available data on 

mean weekly hours worked for both males and females to produce the total annual hours of 

labor supply.  

B.2.1  LABOR HEAT STRESS  

Temperature directly affects the productivity of labor, where the effect intensifies for labor types 

that are outdoors and are conducting more intense physical work. Labor productivity impacts 

follow the methodology applied by the International Labor Organization  (ILO 2019), which has 

been applied globally and used in other similar studies, such as in Kjellstrom et al. (2018). The 

approach is based on workday wet bulb globe temperatures as an indicator of heat stress, which 

refers to the exposure of individuals to extreme heat or hot environments that lead to the body’s 
inability to regulate internal temperature (CDC 2020). A measure of heat stress is used to 

quantify the percentage of a typical working hour that a person can work. The analysis is done at 

a 0.5 x 0.5 degree spatial resolution for the relevant sectors of the economy, resulting in annual 

shocks to labor productivity for every scenario being evaluated.  

Methodology 

Workers are exposed to different temperatures during typical workday hours. The functional 

relationship between work ability and heat stress is quantified using wet bulb globe temperatures 

(measured in Celsius degrees). Wet bulb temperature is a measure of air temperature in relation 

to moisture content, while dry bulb temperature is a measure of ambient temperature. The globe 

temperature is a measure of the thermal radiation that would be absorbed by someone’s skin. We 
utilize the Australian Bureau of Meteorology equation used by Kjellstrom et al. (2008) to 

calculate wet bulb globe temperatures based on daily workday temperatures and monthly mean 

relative humidity levels.4 To approximate workday temperatures from daily minimum and 

maximum temperatures, we use the <4+4+4= method used by the (ILO 2019). This method 

assumes that in a typical 12-hour daylight day, 4 hours per day are close to minimum daily 

temperatures, 4 are close to the maximum, and 4 are close to the midpoint between the two. As 

done by the ILO, we assume these temperatures apply to indoor workers as air temperature is 

measured in shade. For outdoor labor, it is assumed that the wet bulb globe temperatures are 

+2°C higher at full sun exposure.  

Labor productivity effects are then estimated based on the percentage of hours that an 

acclimatized worker can be engaged in work based on their level of heat stress. Occupations 

with lower physical activity can tolerate higher levels of heat stress. Labor productivity loss 

curves from wet bulb globe temperatures for three levels of physical activity (measured in 

Watts), presented in Figure B86, are derived from the ISO 7243:1989 standard (ISO 1989) and 

Kjellstrom et al. (2018) and validated through additional epidemiological studies, as presented in 

ILO (2019b). Generally, 200 Watts represents clerical or light physical work, 300 Watts 

 
4
 ABoM: http://www.bom.gov.au/info/thermal_stress/#approximation  

http://www.bom.gov.au/info/thermal_stress/#approximation
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moderate physical work in industry, and 400 Watts heavy physical work in agriculture or 

construction. Work intensities are then matched to labor hours by sector and occupation, from 

available reported data. We apply available assumptions on outdoor exposure by occupation to 

data on employment by sector in order to split the share of hours worked indoors versus 

outdoors. Then, we estimate the impacts of heat stress on labor productivity for each category of 

workers (by sector and occupation), and for both indoor and outdoor workers.  

FIGURE B86.  WORK CAPACITY AS A PERCENTAGE  FROM WET BULB GLOBE TEMPERATURE S  

 
Source: IEc analysis 

For indoor workers, we exclude the share of those who worked in spaces with air conditioning 

and assume they do not experience any heat stress. Adoption of air conditioning within a country 

(by 0.5 degree grids) is estimated using regional percent coverage of curves from Davis et al. 

(2021), based on mean household income levels and cooling degree days by grid cell.5 

Generally, regions with higher mean household incomes and/or cooling-degree days have a 

higher air conditioning adoption rate. Mean household incomes by country are obtained from 

United Nations and World Bank data (World Bank, n.d.; United Nations 2022). When available, 

data on mean percent adoption of air conditioning at a national scale is used to calibrate the 

estimates obtained from Davis et al. 

For the final step, monthly labor productivity impacts by 0.5 degree grid cell are aggregated 

nationally by macroeconomic sectors (agriculture, industry, and services) and on an annual scale 

for all the completed time series. For agriculture, grid cell level impacts are aggregated using the 

share of cropland as a proxy of the spatial distribution of agricultural workers, using data from 

the Copernicus Fractional Land Cover dataset (Buchhorn et al. 2020). For industry, we assume a 

distribution of workers using gridded gross domestic product data from Wang and Sun (2022). 

 
5
 Cooling degree days are based on the assumption that when the outside temperature is 65°F, people do not need 

cooling to be comfortable. Cooling degree days are the difference between the daily mean temperature minus 65°F. 
https://www.weather.gov/key/climate_heat_cool  

https://www.weather.gov/key/climate_heat_cool
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For services, we aggregate using gridded population data from WorldPop of the University of 

Southampton (Bondarenko et al. 2020b; 2020a).  

Limitations 

• Work intensities and the outdoor exposure of each occupation is matched to labor 

statistics based on the best available information.  

• All occupations are assumed to be performed evenly throughout the day and year. No 

seasonality of occupations is considered.  

• Wet bulb globe temperatures are approximated using monthly mean relative humidity, 

which is kept constant for future years. While there are more sophisticated methods to 

estimate wet bulb globe temperatures that utilize wind speeds and solar radiation, such 

data are not available for this study.  

• Data regarding adoption of air conditioning is sparse. We utilize regional curves for 

household coverage as a proxy for workplace coverage.  

B.2.2  HUMAN HEALTH  

Climate change may impact the total labor supply through increased incidence of and death rate 

from various diseases, which results in time away from work due to absenteeism as well as from 

an increased number of deaths. Climate change could result in increased health effects of vector-

borne diseases such as malaria and dengue, waterborne infectious diseases that cause acute 

diarrhea, and heat-related diseases (WHO 2014; Romanello et al. 2021). The approach utilizes 

different biophysical and statistical relationships between climate variables and the incidence of 

or transmissibility for each disease.  

Changes in incidence and death rates are calculated to model the number of hours of labor 

supply lost. On the one hand, excess deaths relative to the baseline will reduce the total labor 

(see equation A below). This effect is calculated independently for every year and does not 

consider population fertility and death rate dynamics. On the other hand, absenteeism from work 

due to people falling sick will further reduce the total available labor. This effect is divided in 

two, following the methodology applied by John et al. (2021). First, there is a direct effect from 

working age population getting sick and not able to work, and second, an indirect effect from 

children getting sick and needing parental care for the duration of the disease. Total hours of 

labor lost for each disease are then calculated for the country for both historical periods as well 

as future projections, for each disease and effect. Lastly, a percent shock to available labor 

supply relative to the baseline conditions is then calculated for the country total.  

A. Labor hours lost due to death (hours/year): 

• ĀĂþ =  Ā × ā15264 × þ15264 × /Ā 

B. Labor hours lost due to absenteeism for the disease (hours/year): 

• ĀĂý,þ�ÿÿýā =  ÿ × ā15264 × þ15264 × ÿ 

• ĀĂý,ā�ÿÿÿā�ý =  ÿ × ā0215 × þ15264 × ÿ 
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• Ā = deaths = f(climate) 

• C = cases = prevalence x total population = f(climate) 

• ā15264= 15-64 fraction on total population (%) 

• ā0215= 0-15 fraction on total population (%) 

• þ15264= labour participation 15-64 (%)  

• ÿ = average recovery time = week/year (f(disease)) x h/week 

• /Ā = average hours worked per year per person 

Methodology - Vector-Borne Diseases  

Vector-borne diseases are illnesses that are transmitted to humans through the bites of infected 

arthropods, typically mosquitoes. Malaria and dengue are two major vector-borne diseases that 

cause of public health concerns around the globe. The modeling approach is based on the 

modeling of the conditions for stable transmission of the disease (i.e., suitable areas), based on 

the methodology applied by Ebi et al. (2005). The analysis is done for both malaria and dengue, 

typical mosquito-borne diseases whose spread depends on the right environmental conditions 

occurring for the mosquitoes to live, breed and increase in number, at a 0.5 degree resolution. 

These conditions are approximated from three climate variables: mean monthly temperatures, 

cumulative annual precipitation, and minimum annual winter temperature. Those variables are 

normalized using fuzzy functions following Craig et al. (1999), determining a suitability index 

ranging 0 to 1. 

Fuzzy functions based on the equation below are applied to each climate variable. The S and U 

factors are the upper and bottom thresholds of the climate variables respectively, x is the 

observed climate variable, y is the resulting fuzzy variable (the fuzzy variable being y for the 

decreasing curve, (1-y) for the increasing curve):  

1-� = cos2 [ā2āÿ2ā × �2] 
When the fuzzy variable is 0 (i.e., non-suitable), transmission is very unstable, with the disease 

either absent or with rare epidemics; when the fuzzy variable is 1 (i.e., suitable), disease 

transmission is most likely stable; values between zero and one (0.130.9) represent a gradient 

from unstable to increasingly stable transmission. We select the minimum value between 

temperature and precipitation’s fuzzy variables. Then, the mean value of each year is compared 

to the minimum winter temperature fuzzy variable. 

For malaria, the thresholds are U=0, S=80 for precipitation; U=18, S=22 for the mean monthly 

temperature increasing part of the curve, S=32, U=40 for the decreasing part of the curve; and 

U=4, S=6 for annual winter temperature (i.e., minimum value of coldest month) (Ebi et al. 

2005). Figure B87 illustrates the shape of the fuzzy functions for malaria. The same general 

equations are applied for dengue transmissibility. The corresponding threshold values are 

U=450, S=800 for precipitation; U=15, S=20 for the mean temperature (increasing), S=25, U=30 

(decreasing); and U=-1, S=3 for winter temperature (Caminade et al. 2012). Figure B88 

illustrates the shape of the fuzzy functions for dengue. 
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FIGURE B87.  FUZZY FUNCTIONS FOR MALARIA  

Precipi tat ion:     Mean Temperature:   Winter  Temperature:  

 

FIGURE B88.  FUZZY FUNCTIONS FOR DENGUE  

Precipi tat ion:     Mean Temperature:   Winter  Temperature:  

 

Annual fuzzy variables are then used to calculate the exposed population by grid cell, as a 

probability of the occurrence of the disease in the area (LeSueur et al. 1998). Consequent deaths 

and cases due to the disease are then normalized and calibrated using reported deaths and 

prevalence rates from official sources. While malaria generally exhibits a stable transmission 

rate over time (with increasing or decreasing rates), dengue is more episodic and prone to 

random outbreaks that are difficult to attribute to clear factors (Chen et al. 2015). For this 

analysis, we do not model outbreaks or other epidemiological dynamics, and calculate changes 

in death and incidence rates for both diseases relative to the average reported rates of the latest 

five years, or the best available data.  

Methodology - Heat-related Illness 

Heat is a risk factor that can lead to a group of conditions that occur when the temperature of the 

human body is exposed to high temperature and humidity. Heat-related illnesses can include 

severe conditions such as exhaustion or stroke (CDC 2020). Heat effects on mortality and 

morbidity are modeled based on the 2021 Report of the Lancet Countdown on Health and 

Climate Change (Romanello et al. 2021). The methodology is based on calculating excess 

mortality from daily maximum temperatures, following the study by Honda et al. (2014). The 

temperature3mortality relationship is assumed to be V-shaped (see Figure 17), and the 
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temperature value at which mortality is lowest is defined as the optimum temperature (OT). For 

temperatures above the optimum threshold for a given location, excess heat-mortality burden is 

defined daily as a fraction of the average total non-injury-related deaths occurring that day. 

FIGURE B89.  V-SHAPED FUNCTION OF EXCESS MORTALITY DUE TO HIGH TEMPERATURES  

 
Source: WHO 2014 

An equivalent approach to vector diseases is applied to compute heat-related morbidity and is 

quantified by the following equation: ā=�0×ÿĀā×�Ă 

• E = heat-related excess mortality/morbidity in one day  

• y0 = non-injury mortality rate on that day (yearly rate divided by 365) 

• AF = attributable fraction on that day, calculated as  �Ă=(āā−1) / āā=1−ÿ−�(ā−þă) 

• t = daily maximum temperature 

• β = exposure-response factor (Honda et al. 2014) 

• OT = optimum temperature (Honda et al. 2014) 

Excess mortality is calculated for each grid cell and calibrated to nationally reported statistics of 

non-injury heat-related mortality.  

Methodology - Waterborne Diseases 

Waterborne diseases are illnesses caused by contact with water that is contaminated with 

infectious microorganisms that cause diarrhea, vomiting, and fever. Waterborne pathogens can 

spread through drinking water, irrigation waters, or recreational water bodies. Climate change is 

likely to increase the spread of waterborne pathogens such as cholera, typhoid, dysentery, or 



 

  

120 
 

leptospirosis, resulting in increased mortality and morbidity from diarrheal diseases (Levy et al. 

2018; Nichols et al. 2018). Our analysis is based on the modeling approach applied in WHO 

(2014). While most studies highlight a positive association between the incidence of diarrhea 

and temperature, results of the association between mean monthly rainfall and E. Coli diarrheal 

cases are more varied, and the effect is much smaller (Philipsborn et al. 2016). For this reason, 

the WHO model applies gridded estimates only of average annual temperature anomalies to a 

statistical temperature3mortality risk relationship.  

The approach considers combining total estimated diarrheal deaths and cases in the future 

without climate change, and estimating the climate change-attributable percent change. The 

following general equation is applied at a yearly time-step at a 0.5 degree grid cell resolution: ÿ = ý ÿÿ&Ā 2 1ÿÿ&Ā  

• n = number of climate change-attributable average annual diarrhea deaths or cases  

• N = total number of average annual diarrheal deaths or cases in a future without climate 

change, obtained as the product between population and a baseline rate from available 

official statistics 

• ΔT = yearly temperature anomaly  

• β = log-linear increase in diarrheal deaths per degree of temperature increase with  

o β = log (1 + α), where α is the linear increase in diarrheal deaths per degree of 
temperature increase. We assume α as a mid-estimate from WHO (2014). 

The annual number of diarrheal cases and deaths is then calculated as n+N for each grid cell and 

then aggregated at the country level. Figure B90 illustrates the percent change in the incidence 

of cases and deaths from temperature changes.  

FIGURE B90.  CHANGE IN WATER-BORNE DISEASE INCIDENCE FROM CHANGES IN TEMPERATURE  
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Limitations 

• We considered those diseases that are more widely cited and modeled in the literature. 

However, this is not an exhaustive list of all the health effects than can be caused by 

climate change. Other direct and indirect causes of illness that can be linked to climate 

variables, such as schistosomiasis, outdoor air pollution, occupational hazards, or 

malnutrition are not considered in this analysis. 

• We utilize mean baseline mortality and incidence rates to measure the mean effects of 

climate change. Outbreaks and more complex epidemiological dynamics are not 

modeled.  

• Population dynamics over time that account for factors such as births, deaths, or aging 

of the population and result in later effects in labor supply are not considered in this 

study.  

B.2.3  WATER,  SANITATION,  AND HYGIENE  

The human health effects of climate change documented earlier in this section focus on 

assessing potential impacts on labor supply due to increase mortality, including the spread of 

water-borne diarrheal diseases. Yet, development policy initiatives in WASH can indirectly 

influence the severity of potential climate change impacts on human capital, as the quality of 

infrastructure can help to reduce diarrhea cases and related mortality (World Bank 2018).  

This impact channel evaluates the benefits of enhanced investments in WASH, by comparing a 

baseline scenario where current trends of coverage and quality of infrastructure continue over 

time, relative to a scenario where additional investments in WASH reduce the incidence of 

water-borne diseases. These investments are presented as part of the policy scenarios discussed 

in Chapter 3 of the main report. The approach follows the methodology applied by Wolf et al. 

(2019), which is based on a statistical relationship between a fecal contamination composite 

index (FAECI) and the relative risk of diarrheal diseases.  

Methodology 

A population-attributable fraction of the total diarrheal deaths and cases is computed to assess 

the part of those deaths and cases caused by inadequate WASH. This is based on available 

official statistics on WASH coverage. The relative risk associated with such WASH access is 

computed and the change in relative risk due to different policy scenarios is reflected through 

changes in the population-attributable fraction. The relative risk assessment is estimated through 

the FAECI (Wolf et al. 2019), which utilizes a rubric to assign a 0, 1, or 2 value to eight 

indicators related to water, sanitation and hygiene access (see Figure 22). The FAECI 

corresponds to the sum of these indicators, ranging from 0 to 16. Figure B92 presents the 

relationship between the FAECI and corresponding diarrhea relative risk. 
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FIGURE B91.  FECAL CONTAMINATION COMPOSITE INDEX  INDICATORS  

 
Source: Wolf et al. 2019 

FIGURE B92.  DIARRHEAL DISEASE RELATIVE RISK  

 
Source: Wolf et al. 2019 
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Resulting relative risks are calibrated for the country using reported data on mortality and 

morbidity linked to inadequate WASH infrastructure. Then, a percentage change in diarrheal 

mortality and morbidity from improvements in WASH infrastructure relative to base conditions 

scenarios is computed for each scenario at a country scale.  

Limitations 

• We utilize mean baseline mortality and incidence rates to measure the mean effects of 

climate change. Outbreaks and more complex epidemiological dynamics are not 

modeled.  

• Population dynamics over time that account for factors such as births, deaths, or aging 

of the population and result in later effects in labor supply are not considered in this 

study. In particular, child stunting impacts from inadequate WASH and associated 

population effects (e.g., the later effect on labor supply of changing death rates in 

children) are not considered.  

B.3  WATER AND AGRICULTURE  

Overall, natural resources are expected to experience a variety of impacts from climate change. 

Changes in precipitation patterns can result in reduced water resources for rainfed agriculture, 

hydropower generation, and other uses, as well as impacting erosion levels that can result in 

additional downstream effects. Temperature increases are likely to reduce the suitability and 

productivity of crops and can have additional impacts on overall water resources availability. 

We estimate these effects through the following channels: 

• Water supply: which models changes in the availability of water resources for 

particular, water-dependent sectors of the economy.  

• Crop production: which models changes in crop productivity as a function of the 

availability of rainfall and irrigation resources, as well as heat stress effects from 

increasing temperatures. 

• Erosion: which models changes in soil conditions and topsoil erosion from altered 

precipitation, which in turn results in changes in crop productivity.  

• Hydropower: which models changes in hydropower generation due to changes in river 

runoff from altered precipitation regimes.  

 

Water system model 

Figure B93 summarizes the modeling approach of the water system in the country. The analysis 

starts with climate data on temperature, precipitation, and potential evapotranspiration, which is 

converted into water supply as river runoff through the rainfall-runoff model CLIRUN. In 

addition, crop irrigation needs, which are influenced by the projected availability of rainfall, are 

modeled using the FAO66 approach (see Crop Production channel section) as one key input of 

water demand. Other drivers of water demand are included within the WEAP modeling step.  
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FIGURE B93.  WATER RESOURCES MODELING APPROACH  

 

The Water Evaluation And Planning (WEAP) tool, developed by the Stockholm Environment 

Institute's United States Center, is used to evaluate climate change impacts on water availability. 

The WEAP model is used to simulate the allocation, use, and management of water resources 

within a catchment and is used to analysis the impacts of management options on the balance 

between supply and demand for water resources (Yates et al. 2005).6 It uses water balance 

principles to simulate sectoral water demand such as water supply for municipal, industrial and 

irrigated agriculture uses, as well as hydropower generation, and environmental flows. Figure 

B94 presents a visual illustration of the modeling of a catchment in WEAP, where black 

boundaries represent catchments, light blue lines rivers, red circles demand sites, and green 

arrows transmission links.  

 
6
 https://www.weap21.org/index.asp?action=200 

https://www.sei.org/centres/us
https://www.sei.org/centres/us
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FIGURE B94.  ILLUSTRATION OF A CATCHMENT MODELED IN WEAP  

  

Generally, the analysis requires first setting up the spatial boundaries of the study, the 

components of the water system, and the configuration of the problem. This means, first, 

delineating the basins of the country in alignment with the level of detail required for the 

analysis and the available data, and second, assessing the sectoral water demands (municipal, 

industrial, agricultural) together with the reservoirs and hydropower facilities for each basin. 

Given the temporal frame, the system is calibrated using observed data on water resources, 

supply, and demand. The model can then incorporate alternative climate scenarios as well as 

changes in relevant infrastructure and water-related policies to simulate the consequences on 

future supply and demand. For each scenario, WEAP generates a time series of surface water 

availability (runoff), reservoir storage, hydropower, and major water demands in the country in 

order to allow investigation of intersectoral competition between demands. A hierarchical 

structure of water demands is used, which includes agriculture, urban and rural domestic sectors, 

industrial demands, and hydropower. The demand analysis is carried out by disaggregating these 

different sectors, utilizing economic, demographic, and water-use patterns that influence 

demand, which can vary by scenario. The climate and policy scenarios are characterized by 

unique inflows and growing irrigation demand, hydropower, and reservoir storage. The data 

structure and level of detail in the model are customized to meet the requirements of the study 

and the availability of data to set up and calibrate the model.  

We use the best available data from local or global sources to estimate water withdrawals for 

domestic, industry, hydropower, and irrigation uses. Existing modeling studies conducted in the 

country are used to calibrate the analysis, including shapefiles of nationally recognized river 

basins. For river runoff data, calibration is conducted using at least 10 years of monthly 

historical data from gauges in each basin. The model is then used to simulate future withdrawals, 

considering investments in hydropower and irrigation, when relevant. WEAP maximizes 

meeting the requirements for demand sites, reservoir filling, user-specified instream flows, and 
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hydropower subject to priorities in consumption, supply preferences, overall balance, and other 

constraints. In general, the outputs produced by the model include unmet water demand by 

sector/user (irrigation, municipal, industrial), hydropower generation, and environmental flows.  

B.3.1  WATER SUPPLY  

Insufficient water supply can affect manufacturing and other water-dependent industries in a 

country, as well as domestic use by the general population. We use a water systems model 

(described above) to evaluate shortfalls to municipal and industrial demand, given competing 

uses, climate change effects, and available storage infrastructure.  

This channel assesses the macroeconomic shock from water availability either as (a) the impact 

of shortages or (b) the cost of a replacement water supply (e.g., desalinization), for the climate 

and policy scenarios being considered. Policy scenarios may consider improved infrastructure as 

well as changes in water demands across all sectors. Annual shortages or replacement costs will 

be compared against baseline conditions to quantify the macroeconomic shocks.  

Methodology 

The analytical approach for this channel follows the description of the water systems model 

presented above. In general, the analysis considers four steps.  

1. First, a basin delineation process, which considers determining a reasonable number of 

basins in the country to be assessed based on the level of detail required for the analysis 

as well as of the available data. The delineation should follow officially recognized 

basins, previous studies, or globally modeled basins, such as the ones from 

HydroATLAS, at the most suitable resolution. Basins of particular interest (e.g., large 

demands or the presence of an important reservoir) may be drawn separately to ensure 

important features are captured in the modeling. 

2. Second, gathering data on reservoirs and hydropower facilities, including point location, 

storage volumes, turbine capacity, generation capacity, electricity production, and other 

available technical characteristics of reservoirs. When available, local sources are 

preferred to international sources. If data is unavailable, values are estimated through 

regional or international standards.  

3. Third, demands assessment. Industrial, municipal, and irrigation demands are gathered 

or estimated from local databases at the highest possible resolution, and then allocated to 

each basin. This may include reported statics, recent master plans, or similar studies 

where available and projected demands are based on historical population growth 

factors. When only national or regional values are available, we downscale demands 

based on statistics such as gridded population distribution or the location of relevant 

water-consuming industries (see illustration in Figure B95). Irrigation demands are 

assessed using crop water requirements (see irrigation section within the Crop 

Production channel).  

4. Finally, the WEAP model is built for the country. Each basin is designated a main river, 

one or multiple nodes for sectoral demands (i.e., irrigation, municipal, and industrial), 

transmission links from the main river to each node, return flows, sectoral withdrawal 
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priorities, reservoirs, and hydropower facilities. The model is then calibrated using the 

available historical observations of runoff, demands, storage, and generation.  

FIGURE B95.  DEMAND DOWNSCALING PROCESS ILLUSTRATION  

 

Once the calibration is completed, the model is run for a range of climatic and policy scenarios 

of interest. The availability of water resources for municipal and industrial users will be 

converted into unmet demands, which in turn, will be broken down by the relevant sectors of the 

economy (e.g., manufacturing) and population (urban, rural), as possible. Unmet demands are 

driven primarily, by a combination of factors including changes in resources resulting from 

climate change, changes in demands for other water-intensive sectors (i.e., irrigation and 

hydropower) due to capital or technological changes, environmental flow requirements, and the 

priority of uses in the country.  

Limitations 

• The shortage of data on groundwater availability and withdrawals is an important source 

of uncertainty in the analysis, and deserves further attention as part of any efforts to 

pursue new surface water-based irrigation investments. 

• Assessment of the implications of deteriorating water quality and increasingly saline 

soils on water demands in future years is not included. The decrease in quality could 

likely either further reduce water reuse or cause productivity impacts.  

• Actual water allocation to users is complex and water system models simplify these into 

priorities or decision rules, particularly when available water is scarce.  

• Actual water levels in reservoirs that generate hydropower may differ from reality. 

B.3.2  CROP PRODUCTION  

Under climate change, rainfed crop yields will be affected by changes in rainfall patterns, 

increasing evaporative demands, and extreme heat as temperatures rise. The analysis is 

conducted for selected crops at a 0.5 x 0.5 degree spatial resolution.  
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The approach relies on the Food and Agriculture Organization’s Irrigation and Drainage Paper 

66, Crop Yield Response to Water (Steduto et al. 2012), in which rainfed crop yields are 

estimated by applying crop-specific water sensitivity coefficients to the ratio of effective 

precipitation to potential crop evapotranspiration. This approach is the basis for the Food and 

Agriculture Organization’s monthly crop model CropWat, which is the predecessor to their daily 

biophysical crop model, AquaCrop.7  

The water availability approach is then supplemented with impacts to crop yields from extreme 

heat during reproductive stages of development, when crops are more sensitive, causing a 

reduction in seed numbers (Prasad et al. 2015; Roberts 1988). Heat stress impacts are modeled 

daily following AquaCrop’s approach (Salman et al. 2021), which considers a negative 

relationship between supra-optimal temperatures during the flowering stage of crop 

development.  

Methodology 

First, representative crops are selected for the country. In general, crops are selected so as to 

represent at least 80 percent of the total production revenues as well as harvested area in the 

country. Additional crops of national relevance may also be added to the list. For each country, 

crop calendars are obtained from the Food and Agriculture Organization (FAO 2022) and 

supplemented with local sources when available. Crop calendars (i.e., the time of the year when 

crops are sown, grown, and harvested) are allocated to 0.5 degree grid cells based on the 

production zones in the Food and Agriculture Organization’s calendar, which is based on 

administrative districts and/or agro-climatic regions. We gathered harvested area, production, 

yield, and revenue statistics from available local or global sources. We also gathered irrigation 

statistics from the best available sources, distinguishing rainfed from irrigated production.  

Potential evapotranspiration (ET0) is used as a reference to estimate crop water requirements by 

adjusting it based on the crop and growth stage. For each crop, water demand is calculated by 

multiplying monthly potential evapotranspiration (ET0) by monthly crop water demand 

coefficients (Kc), which produce annual crop evapotranspiration requirements (ETc). Monthly 

potential evapotranspiration was calculated using the modified Hargreaves method (Droogers 

and Allen 2001), which requires data on extraterrestrial radiation, monthly precipitation, and 

minimum and maximum temperatures. Crop water demand coefficients for each month of the 

growing season were obtained from the Food and Agriculture Organization’s Irrigation and 

Drainage Papers 33 and 56 (Allen et al. 1998; Doorenbos and Kassam 1979). Rainfed crop water 

supply is effective precipitation (Pe), which is monthly precipitation adjusted for drainage 

qualities of the soil and then capped at ETc levels. Pe is calculated from monthly precipitation 

data following the methodology from the Food and Agriculture Organization’s Irrigation Water 

Management Training Manuel no. 3 (Brouwer and Heibloem 1986). Next, we calculate the 

annual ratio of effective precipitation (Pe) and crop water need (ETc) by grid cell for each crop 

and then multiply these results by the corresponding annual yield response coefficient (Ky), as 

presented in the equation below, following the approach from the Food and Agriculture 

Organization’s Irrigation and Drainage Paper 66 (Steduto et al. 2012). Maximum crop 

 
7
 https://www.fao.org/aquacrop/overview/whatisaquacrop/en/  

https://www.fao.org/aquacrop/overview/whatisaquacrop/en/
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evaporation assumes no water constraints, whereas actual evapotranspiration is reduced based on 

available rainfall, which allows for the calculation of actual yields (Ya), as a deficit from non-

water-constrained yields (Yx). For Ky values below one, crop yields fall below the water deficit, 

whereas for Ky values greater than one, yield losses are relatively greater than the water deficit. (1 2 ���ā) = ÿĂ(1 2 ÿÿāăý) 

Figure B96 illustrates the relationship between mean monthly precipitation and resulting annual 

yield response following the approach described above, for 6 different levels of mean monthly 

potential evapotranspiration (PET). For a given potential evapotranspiration level, higher 

precipitation volumes result in higher yield responses. When potential evapotranspiration is low, 

less precipitation is required to reach the maximum yield response (i.e., 1) 

FIGURE B96.  RELATIONSHIP BETWEEN PRECIPITATION AND CROP YIELD RESPONSE  

 

For irrigated crops, the analysis is completed by crop at the water system model’s resolution. 
The agricultural demand modeling uses the following inputs: shapefiles of the irrigated areas in 

the country or the total irrigated hectares of each basin, historical withdrawals, crop irrigation 

water use, different irrigation technology mix and system-wide irrigation efficiency. Specific 

data on irrigation technologies or devices (e.g., sprinkler, drip, or flooding irrigation) are 

considered when possible. Water requirements by crop are determined following the same 

approach from the Food and Agriculture Organization’s papers 56 and 66 as for rainfed crops 
(described above), obtaining per-hectare estimates of millimeters of water required. Irrigation 

water requirements correspond then to the balance of water required to meet crop demands after 

accounting for effective precipitation supply (Pe) and considering crop water needs (ETc), 

monthly crop coefficients (Kc), and growing calendar. Irrigation water requirements are then 

translated to water withdrawals by river basin based on total hectares of irrigated cropland and 

basin-level irrigation efficiencies. To evaluate the impacts of climate change on irrigated crops, 
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the resulting unmet water demands at a basin scale from the water system model are used to 

quantify reductions in crop yields, as done for rainfed crops.  

Next, a yield impact from temperature (Ks) is calculated based on daily maximum temperatures, 

determined by crop-specific optimum temperatures and tolerance thresholds. The modeling 

starts by gathering optimum and maximum tolerance temperatures by crop from the Food and 

Agriculture Organization’s Crop Ecological Requirements (ECOCROP) database (2015), which 

will determine at which temperature a crop will start experiencing damage until it suffers full 

loss. Crops are typically more vulnerable to heat during reproductive stages than vegetative 

stages. We consider the months during the flowering stage of crop development to determine the 

maximum temperature a crop is exposed to. These months are identified following the methods 

outlined in the Food and Agriculture Organization’s Irrigation and Drainage Papers 33 and 56 

(Allen et al. 1998; Doorenbos and Kassam 1979). Temperature yield responses (Ks) are 

estimated based on a logistic relationship between temperature and maximum attainable yields, 

as indicated in the equation below and illustrated in Figure B96 for an illustrative threshold of 

35°. Topt is the optimum temperature above which crop yields start decreasing; T is the 

maximum daily temperature, and B and v are factors that are calibrated for each crop based on 

its tolerance thresholds. Results range from 1 to 0, where 1 represents no stress and zero 

represents total crop failure.  ÿĀ = 1 2 1(1 + ÿ2þ(Ā2ĀĀāā))1/ÿ 

FIGURE B97.  ILLUSTRATIVE RELATIONSHIP BETWEEN TEMPERATURE AND YIELD RESPONSE  

 

Temperature effects are typically experienced after consecutive days of exposure. For each day 

during the flowering period, we consider the lowest effect between the daily effect on t, t-1, and 

t-2 from the equation above. Major food crops, such as wheat, sorghum, maize, and oil crops 

start experiencing the effects of heat after three consecutive days of exposure (Wahid et al. 2007; 

Nuttall et al. 2018; Hatfield and Prueger 2015; Gourdji et al. 2013). We utilize the highest 3-day 

effect across the entire flowering period as the annual temperature effect on yields for all crops.  
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Temperature impacts the potential yield of crops during the flowering stage, while precipitation 

impacts the resulting production, therefore producing multiplicative effects. Hence, water 

availability and temperature shocks are then combined into a single shock by crop. Grid cell 

level shocks are aggregated nationally based on the spatial distribution of crop production from 

available sources. Crop-specific shocks are also aggregated into a total production shock using 

crop revenues as weights.  

Limitations 

• We consider a subset of all crops grown in the country, which necessarily excludes some 

crops.  

• Additional effects from agricultural practices, soil characteristics and conditions, 

fertilizer use, and other climate variables (e.g., wind speed or radiation) are not 

considered in the model.  

• Both water and temperature coefficients are taken from existing literature for 

representative varieties of each crop. Whether local varieties have different levels of 

tolerance is not considered in this study.  

• We consider heat exposure for crops during the hottest 3-day period during the 

flowering stage, which is the time at which crops are most sensitive to heat. However, 

shorter episodes of extreme heat as well as longer periods of consistently high 

temperatures can result in additional yield losses or potential crop failure. In addition, 

crop biomass could suffer from heat exposure in other stages of development, however, 

these effects are not considered.  

• The start date and length of the crop’s growing seasons are assumed to be static over 

time. However, farmers may adjust growing patterns based on short-term weather 

forecasts.  

• An assessment of the implications of deteriorating water quality and increasingly saline 

soils on water demands in future years is not included. The decrease in water quality 

could likely either further reduce water reuse practices or cause productivity impacts.  

• Reservoir volumes are assumed to remain constant at reported levels, with limited 

effects from sedimentation considered. This assumption may overestimate water storage 

availability over the next 40 years. 

B.3.3  EROSION  

Soil erosion is a major concern in many countries. Erosion can be detrimental to landscapes, 

impacting plant and animal life, reducing the efficacy of reservoir storage and hydropower 

production through sedimentation, and causing declines in agricultural production by removing 

valuable nutrients from the topsoil, which may be made worse if climate change intensifies 

future rainfall intensity. In addition, Nambajimana et al. (2020) find a correlation between higher 

poverty levels and estimated erosion rates. 

To determine erosion rates, we use the Revised Universal Soil Loss Equation (RUSLE) 

developed by the United States Department of Agriculture (Wischmeier and Smith 1978) and 
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revised by Renard et al. (1997). This equation is the most widely used approach to estimate 

erosion and soil loss rates and has been used in Rwanda (Nambajimana et al. 2020), Uganda 

(Karamage et al. 2017), and many other nations worldwide (Panagos et al. 2017). For 

information on the uncertainties of the Revised Universal Soil Loss Equation approach, see 

Alewell et al. (2019) and Benavidez et al. (2018). Soil erosion estimates are converted into crop 

yield losses following an approach developed by the Food and Agriculture Organization 

(Kassam et al. 1991).  

Methodology 

The Revised Universal Soil Loss Equation calculation requires five key inputs, which are shown 

below. A is the soil loss and R is rainfall-runoff erosivity (i.e., the potential of rainfall to cause 

erosion by generating runoff). K and LS are static climate and land factors, while C and P are 

activity and farm-level management factors. The following outlines the data sources and 

approaches used to determine each of these parameters. � = ā ∗ ÿ ∗ ĀĂ ∗ ÿ ∗ ÿ 

Estimating the revised rainfall-runoff erosivity (R) requires highly temporally detailed (30 min) 

rainfall records for a variety of storm events. However, many methods have been developed to 

approximate R. Two datasets are used to determine the rainfall-runoff erosivity: we use a 

historical dataset of R factors from Panagos et al. (2017), and adjust for future climate scenarios 

using Lo et al. (1985).  

The soil erodibility factor (K) correlates with soil properties (i.e., fraction of sand, silt, clay, and 

organic carbon). The K-factor was estimated using the relationship between soil properties and 

K developed by Williams (1995).  

The slope and slope length (LS) factor is a product of slope length (L-factor) and slope steepness 

(S-factor). The L-factor was computed following the method proposed by Desmet and Govers 

(1996) while the algorithm recommended by McCool et al. (1989) was used to calculate the S-

factor.  

The C-factor determines the impact of land cover and management practices on the magnitude 

of soil erosion. The equation proposed by Durigon et al. (2014) is used here to approximate the 

C-factor. This requires land cover data, which was sourced from the biweekly mean MODIS (or 

Moderate Resolution Imaging Spectroradiometer) normalized difference vegetation index 

(NDVI) provided by the National Aeronautics and Space Administration (NASA 2022).  

Lastly, support practices (P) reflect erosion-reducing practices employed by farmers and vary by 

conservation support practices such as contouring, strip-cropping, and terracing. Although all 

three of these practices can be implemented, a generic P-factor is used that was recommended by 

Wischmeier and Smith (1978), which varies with slope. 

Generally, areas that are impermeable (e.g., rocky surfaces or waterbodies) and areas with mean 

slopes that exceed 20 percent are excluded from the analysis because erosion on these surfaces 

tends to be low or highly uncertain with the Revised Universal Soil Loss Equation approach.  

As noted, soil loss can reduce the nutrients available to crops, if not replenished by fertilizers, by 

eroding the topsoil. Although topsoil is generated naturally, natural generation is slow, usually 
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less than 1 mm/year, or roughly 12t/ha, depending on soil density (Hammer 1981; Hudson 

1981). To approximate the impact this has on the major crops, we use a method developed by 

the Food and Agriculture Organization (Kassam et al. 1991). The approach is based on a 

tolerable loss rate over time and varies by levels of inputs (high, intermediate, and low) as well 

as the susceptibility of soils to productivity loss. We use global raster data of fertilizer use 

(nitrogen and phosphorus) from the Global Agricultural Inputs dataset to determine the level of 

input in a country (Potter et al. 2010). 

Limitations 

• While this approach is appropriate for a nation-level assessment, the methods rely on 

satellite-derived datasets. For farm-level analysis, more detailed data on farm practices, 

soils, rainfall erodibility, slope, and other locally derived information will provide a 

more accurate estimate of farm-level erosion. 

• Although outputs from state-of-the-art global climate models are used in this analysis, 

these models are not able to accurately estimate changes in extreme events such as 

heavy rainfall that can cause significant soil loss in a short period of time. The Revised 

Universal Soil Loss Equation approximates soil loss on short time scales (half-hour), but 

changes in precipitation on these time scales are beyond the scope of global climate 

models.  

• Erosion causes the depth of the soil layer to deplete over time. The depth to bedrock or 

other semi-impervious ground content (such as heavy clay) may significantly reduce the 

rooting depth that crops can achieve during the growing season. Shallower rooting 

depths reduce the soil water available to crops, which then reduces crop yields and 

eventually renders crop fields unusable. This effect was not evaluated in this study. 

• Production decreases in response to topsoil loss from this approach are not crop-specific. 

 

B.3.4  HYDROPOWER  

Climate change may impact hydropower generation directly through a reduction in river runoff 

and reservoir levels, and indirectly through changes in the water demands for competing uses 

(e.g., irrigation). These nexus effects are modeled through the water systems model presented 

above. To estimate the effect of climate change on hydropower production, the following 

reservoir balance approach is applied to each catchment: ĂāĀÿ�āÿþ = �ÿĀþĀĀĀþ 2 āÿþÿ�Āÿþ 2  Ăāÿþþþ +  ĂāĀÿ�āÿþ21 2  āÿ�āþ 

where storage is the volume of water in the reservoir each month, inflows are upstream runoff, 

releases are allowed to flow out of storage to meet demands, and spill is any excess outflow over 

and above releases that is needed to keep the reservoir volume below its maximum.   

This channel evaluates changes in hydroelectric energy under the selected climate scenarios, as 

well as relevant policy and infrastructure interventions being explored (e.g., new reservoirs and 

powerplants). Monthly hydropower generation (in GWh) is produced as model output and an 
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evaluation of climate change impacts is carried out by comparing the baseline production across 

the different scenarios. 

Methodology 

Hydropower generation is a function of flow through the turbines and potentiometric water head 

each month. To convert reservoir storage to hydropower generation (including for run-of-river 

facilities) requires a volume-elevation curve to relate volume to head, as well as turbine 

elevations, maximum turbine flows, turbine efficiencies, minimum turbine flows, and capacity 

factors. We gathered these data from local sources where possible, and where no local data was 

available, we made assumptions based on similar facilities elsewhere. If missing, turbine flow 

capacity was extrapolated using the hydropower production equation: ÿ = Ā ∗ / ∗ � ∗ ā ∗ � 

where P represents power capacity in megawatts (MW), Q the flow rate or turbine flow (m3/s), 

h the net head or usable fall height (m), η the turbine efficiency (assumed to be 0.9), g the 

acceleration from gravity (9.81 m/s²), and ρ the water density (~ 1000 kg/m3). 

Modeled runoff data for each scenario serve as input into the reservoir balancing model.  

Potential evapotranspiration is one of the key inputs to runoff models, and represents the amount 

of water lost through evaporation and transpiration, assuming that sufficient water is available 

over the period in question. Monthly potential evapotranspiration was calculated using the 

modified Hargreaves method (Droogers and Allen 2001), which relies on precipitation, 

temperature, and average daily temperature range data, along with the latitude of the basin 

centroid, which is used to estimate solar radiation. 

Data on reservoir storage, demand, and outflows were gathered from local sources, where 

available. In cases where these data were not readily available, international datasets on reservoir 

storage were used in combination with documented techniques to approximate both agricultural 

and non-agricultural water demands (e.g., irrigated areas/crops combined with climate 

information for irrigation, gridded population for domestic and industrial use). This same 

approach was also used for other key assumptions, which include: turbine flow and position, 

volume-elevation curves, generation assumptions for plant capacity factors (representing the 

percentage of each month that the plant is running), generation efficiency (i.e., the overall 

operation effectiveness in converting the energy of the falling water into electricity), energy 

demands, and value of electricity. Generally, the values were extrapolated from other reservoirs 

or hydropower facilities with available data, assuming a similar behavior. 

An example of a reservoir-hydropower scheme is presented in Figure B_. The figure shows two 

reservoirs (green triangles). If the reservoir is dedicated to hydropower production, the node will 

utilize the assumptions on physical characteristics (e.g., storage capacity, initial storage, volume-

elevation curve, etc.) and hydropower-specific characteristics (e.g., turbine flow capacity, 

tailwater elevation, plant factor, efficiency, etc.) to calculate the total generation over a period of 

time.  
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FIGURE B63.  ILLUSTRATION OF RESERVOIR SCHEMATIC IN WEAP  

 

Limitations 

• The delineation and resolution of basins are based on the best available river runoff data. 

Such planning scale data can be too coarse to catch the full range of complexities in sub-

catchments as well as in national water systems. 

• Actual water allocation to users is complex and water system models simplify these into 

priorities or decision rules, particularly when available water is scarce. Actual water 

levels in reservoirs that generate hydropower may differ from reality.  

• The monthly time step assumes water can be allocated efficiently within a month and 

does not account for fluctuations in reservoir levels from either inflow or hydropower 

generation during peak demand hours or days (e.g., weekend vs weekday). Monthly 

water system models tend to miss smaller time-scale unmet demands that can 

particularly impact domestic or industrial water users.  

 

 

B.4  INFRASTRUCTURE AND SERVICES  

Climate change is likely to impact infrastructure, and the services provided by it, by increasing 

the frequency and magnitude of extreme events that result in damages to assets, as well as by 

increasing deterioration caused by heat and precipitation levels. We model these effects through 

the following channels: 

• Inland flooding: which models damages to capital across the country from changes in 

the magnitude and frequency of riverine (fluvial) flooding events. 

• Sea-level rise and storm surge: which shocks coastal capital from increases in mean 

sea-level as well as changes in the frequency and magnitude of storm surge events. 
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• Tropical cyclones: which models damages to capital across the country from changes in 

the recurrence and magnitude of tropical cyclones. 

• Tourism: which considers a shock to tourism revenues due to damages and disruptions 

to tourism infrastructure from extreme events, as well as from changes in overall 

climatic conditions.  

Infrastructure and capital stock model 

Various biophysical models will be used to estimate the hazard and the damages on each 

individual infrastructure channel. The exposure and vulnerability of assets are determined by 

three key variables: the geospatial location, the type or sector of the asset, and the total value of 

the asset. We developed a common asset location and value layer that served as the basis for the 

calculation of damages and impacts. Asset values are determined at a national scale based on 

data or estimates of total capital value from gross domestic product. Total capital stock value is 

estimated by dividing gross domestic product data by the capital-output ratio of the country or 

region (i.e., the ratio of the total economic output generated for each unit of invested capital). 

Capital-output ratios are used as an indicator of the efficiency of an economy, with lower values 

indicating high productivity and lower capital requirements to achieve additional growth. If local 

information is not available, national capital stocks and output-ratios are obtained from the 

International Monetary Fund’s Investment and Capital Stock Dataset (IMF 2021). Then, sectoral 

as well as spatial breakdowns are modeled using the best available information from local 

sources, which typically is available by province, district, or similar administrative boundaries.  

In cases where these data are unavailable, we estimate the spatial distribution using proxy high-

resolution data such as land use land cover data from the Copernicus Fractional Land Cover 

dataset (Buchhorn et al. 2020), gridded population data from WorldPop of the University of 

Southampton (Bondarenko et al. 2020b; 2020a), gridded gross domestic product data from 

Wang and Sun (2022), value of crop production from the Food and Agriculture Organization’s 

Global Agro-Ecological Zones project (GAEZv4) (Fischer et al. 2021), and shapefiles of 

specific infrastructure types (e.g., residential, industry, transport) from the Humanitarian 

OpenStreetMap Team geospatial data (HOTOSM 2020). 

B.4.1  INLAND FLOODING  

Flooding events disrupt daily life and cause damage to infrastructure and physical capital. 

Climate change may exacerbate flooding by increasing the frequency, intensity and duration of 

storm events. This analysis relies on projected changes in the return interval of peak 

precipitation events from the World Bank’s Climate Knowledge Portal. Flood hazard maps are 

developed to determine areas with a certain probability of flooding for a given baseline and 

climate change projected return period. The outputs of flood hazard mapping include the extent 

and depth of flood inundation, which are then used to estimate damages to infrastructure. 

The analysis is done for the available eras, recurrence intervals, climate scenarios in the Climate 

Change Knowledge Portal for changes in the annual exceedance probability of the largest 1-day 

precipitation relative to history, at a spatial resolution determined by the available hydrology and 

asset distribution data. An era refers to a period of time with distinct characteristics or patterns, 

for example, a decade or a 30-year period. The eras considered are 2010-2039 (centered in 
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2025), 2035-2064 (center 2050), and 2060-2089 (center 2075). The modeling considers a 

combination of the probability of occurrence of 5, 10, 20, 25, 50 and 100-year return period 

events. The resulting outputs are aggregated to a national scale, and correspond to the expected 

share of assets damaged relative to a historic baseline (1995 to 2020).  

Methodology 

The first step in the process is to model runoff from historical daily precipitation data for a range 

of return periods using the TR-20 approach, which relies on curve numbers to estimate the 

amount of runoff. Curve numbers are an empirical parameter developed by the United States 

Department of Agriculture (USDA) Soil Conservation Service that represent the ability of the 

surface to absorb rainfall before rainfall occurs, depending on the land use, soil type, and 

moisture conditions. For this process, curve numbers are determined for each catchment, then, 

estimating runoff as the excess between rainfall and soil infiltration. Figure B98 illustrates the 

relationship between precipitation (P) and runoff (Q) for different curve numbers. Next, peak 

flows in cubic meters per second (m3/s) are estimated for each catchment and used to generate a 

hydrograph. Projected future runoff is calculated by applying the change in the annual 

exceedance probability for each scenario from the Climate Change Knowledge Portal to 

historical precipitation, and recalculating runoff.  

FIGURE B98.  CURVE NUMBER MODEL  

 

For the next step in this process, we utilize the HydroRivers geospatial dataset (Lehner and Grill 

2013), which contains a vectorized river network for the globe, to estimate floodplain boundaries 

as buffers around river centerlines. We model river flows from the modeled runoff data using the 

Muskingum-Cunge method of flood routing (Ponce 2014), which considers routing parameters 

based on hydraulics to simulate accumulating flows as water moves from upstream to 

downstream over time. Brunner and Gorbrecht (1991) present an application of this method. 

Figure B99 presents a schematic of this process. The HydroBasin data is used to develop a 

stream network from the pour point at the ocean all the way upstream, which could extend 
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beyond the country borders. Peak discharge time increases and peak flows decrease as flow is 

routed downstream (see the right diagram for nodes 45, 48, and 49). 

FIGURE B99.  ROUTING OF HYDROGRAPHS SCHEMATIC  

 

Next, we identify those floodplain areas within which assets are subject to damage. We calculate 

a bankfull river width (i.e., the surface width at a bankfull river stage) for each river link using 

the equation developed by Allen et al. (1994). For calculating bankfull widths, we consider the 

streamflows that are exceeded by 10 percent of the observed records (i.e., q10 flows). Then, we 

calibrate floodplain extent based on floodplain-to-width of stream ratios developed by Bhowmik 

(1984), which take into account stream order. The stream order value indicates the river ordering 

from sink to source, with downstream rivers having lower floodplain-to-width ratios. For each 

climate scenario, flood widths are next converted into flood depths within the identified 

floodplain. Depths are calculated for each stream reach using a triangular arithmetic approach 

based on widths obtained from the routing model, a rectangular cross-section, and Manning’s 
equation which relates flow rate, velocity, and depth of water in a river as shown below: Ā = (1ÿ) ∗ � ∗ ā23 ∗ :Ă 

Where Q represents the flow rate (m3/s), n the Manning's roughness coefficient (dimensionless),  

A a cross-sectional area of flow (m2), R the hydraulic radius (m), and S the channel slope (m/m). 

Flood hazard maps are finally produced for the various scenarios and used as the basis for 

quantifying capital losses. Depths for each section of the floodplain are then combined with 

depth-damage functions to estimate the total share of infrastructure that is damaged in a 

particular flood event. Damage functions describe the relationship between the level of asset 

damage and the flooding depth. The maximum flood damage to an object can be computed as a 

certain damage factor multiplied by the total dollar value of the object. Global flood depth-

damage functions are available by region and state defined for water depths between 0 and 6 

meters (Huizinga et al. 2017). Figure B100 shows an illustration of available depth-damage 

functions from Huizinga et al. for agricultural, commercial, and residential capital, for three 

different regions of the world. We calibrate these depth-damage functions by assuming that, for 
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each catchment, infrastructure is built to withstand the historical 10-year event, hence 

experiencing no damage at the corresponding flood depths.  

FIGURE B100.  DEPTH-DAMAGE FUNCTIONS  

 

Lastly, we estimate the resulting damage from rainfall events of the return periods available in 

the climate data (i.e., 5, 10, 20, 25, 50, and 100-year events) for every catchment by overlaying 

capital value data by the percent damage from the damage function according to the estimated 

flood depth. The overlap between the floodplain and capital represents the total exposed assets, 

while the multiplication of its values and the percent loss from the damage function returns the 

absolute loss. Total expected damage (i.e., the damage times the probability) is also quantified 

by summing the total area under the damage-exceedance probability curves presented above and 

multiplying by the total exposed assets within each basin. Final results are aggregated nationally, 

weighted by the share of assets within each basin, representing the total damages to the country.  

Limitations 

• The analysis considers the flooding impacts from single-day extreme rain events within 

the region. Flooding may be caused by longer periods of continuous rain. These effects 

are not considered in this study. 

• Detailed modeling and high-resolution terrain data would be required to estimate more 

accurate depths at a given location.  

• We are not able to calibrate and verify the model output fully, in some cases, due to a 

lack of available records collected during major flood events. Project-scale analysis and 

modeling should be used to evaluate and verify these results when available. 

• More complex numerical hydrologic models are available but require extensive input 

and field measurements to ensure accuracy.  

• Asset values are proxied using the best available information on localized gross 

domestic product and capital-output ratios,  and damages are quantified using generic 
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depth-damage curves. Localized damages to a particular building may differ from these 

estimates depending on actual infrastructure conditions, flood depth and infiltration, or 

location of critical inventory such as mechanical and electrical equipment. 

• Capital value is estimated using high-level (e.g., for a whole country or sector) capital-

output ratios, which assume the same levels of productivity and conditions of capital. 

Local values may differ from this estimate due to differences in the type of the 

physicality of capital (i.e., different types of infrastructure), age, depreciation levels, 

sectors, and overall conditions and context.  

B.4.2   TROPICAL CYCLONES  

Tropical cyclones and hurricanes can have substantial economic consequences. We model the 

impacts of cyclones using an approach previously applied to the island of Mauritius, in which a 

large number of synthetic hurricane tracks are generated. We collaborated with WindRiskTech, 

led by Massachusetts Institute of Technology Professor Emeritus Kerry Emanuel, who pioneered 

this technique, with detailed methods provided in Emanuel et al. (2006) and Emanuel et al. 

(2008). For each of these tracks, we then run a deterministic, coupled numerical model to 

simulate the storm intensity. Incremental damages to capital value relative to the baseline period 

are then estimated. Shocks are calculated for specific infrastructure types based on available data 

on the value and location of assets for a set of eras and Shared Socioeconomic Pathway 

ensembles available from the WindRiskTech data. These include track ensembles for eight 

climate models (CESM2, CNRM6, ECEARTH6, IPSL6, MIROC6, MPI6, MRI6, and UKMO6), 

four time periods including a historical or <hindcast= ensemble and three future ensembles 
(1995-2015, 2021-2040, 2041-2060, and 2081-2100), and two SSPs (SSP2-4.5 and SSP3-7.0).  

Methodology 

Cyclone event generation begins by randomly seeding a given ocean basin with weak tropical 

cyclone-like disturbances, and using our intensity model to determine which one of these 

develops to tropical storm strength or greater. Tracks can be generated globally, or for a 

specified ocean basin, and filters can be applied to the track generator to select tracks coming 

within a specified distance of a point or region of interest (for example, a city or county) or 

passing through any of a set of user-specified line segments. In filtering the tracks, a record is 

kept of the number of discarded tracks and this is used to calculate the overall frequency of 

storms that pass the filter. Once the cyclone tracks have been generated, a coupled hurricane 

intensity model is then run along each of the selected tracks to produce a history of storm 

maximum wind speed. This model uses monthly climatological atmospheric and upper ocean 

thermodynamic information but is also affected by ambient environmental wind shear that varies 

randomly in time. Figure 66 shows an ensemble of 800 tracks and the max wind speed (in knots) 

at each point along its path, for the 2041-2060 era and SSP3-70. This includes tropical cyclones 

from all of the eight climate models.  
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FIGURE B101.  ENSEMBLE OF TROPICAL CYCLONE TRACKS AND MAX WIND SPEEDS (KNOTS)   

 

The coupled deterministic model produces a maximum wind speed and a radius of maximum 

winds, but the detailed aspects of the radial storm structure are not used, owing to the coarse 

spatial resolution of the model. Instead, as a post-processing step, we use idealized radial wind 

profiles, fitted to the numerical output, to estimate maximum winds at fixed points in space away 

from the storm center.  For each point of interest, the intensity model is run many times to 

produce desired statistics such as wind speed exceedance probabilities for that point. Both the 

synthetic track generation method and the deterministic model are fast enough that it is practical 

to estimate exceedance probabilities to a comfortable level of statistical significance. Changes in 

exceedance probabilities are then translated into increases in tropical storm damages, which are 

utilized as shocks to the macroeconomic model.  

Wind speed damage is estimated for a series of grids across the country using the peak wind 

speed for that grid for each tropical cyclone. These peak wind speeds are translated to damage 

using an established wind-to-damage relationship first introduced in Emanuel et al. (2012), 

where 50 knots is the peak wind speed at which damage begins. Peak wind speeds below this 

threshold result in zero damage for that event. This wind-to-damage relationship is summarized 

below. 

The fraction of the property value lost (f) is estimated as  
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Ā = ÿ31 + ÿ3 

where v is a function of peak wind speed, V, when V is greater than 50 knots. ÿ = [� 2 50]60 ýÿĀāĀ 

This relationship produces an S-curve shape as shown in Figure B102. 

FIGURE B102.  RELATIONSHIP OF PEAK WIND SPEED TO PROPERTY DAMAGE (EMANUAL 2012)  

 

Relative capital value at each grid is estimated similarly to other impact channels, where a 

gridded layer of GDP is overlaid on a land cover map to determine the relative value of built-up 

areas and buildings within each evaluation grid.  

Limitations 

• Tropical cyclones are highly uncertain and while this approach makes use of the most 

advanced numerical representation of downscaled, global climate model-specific, 

tropical cyclone tracks and characteristics, the results are still uncertain and offer a wide 

range of possibilities for the future.  

• Wind and precipitation damage assessments are also highly uncertain and depend on 

decisions made in the construction process as well as a natural degradation of structural 

integrity over time.  

• Actual damage and impacts of tropical cyclones will change depending on the time 

between events. For example, a second hurricane in the same month will impact how 

evacuations occur and how buildings with existing damage will be impacted in the 

second event. We do not take these effects into consideration. 
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• Capital value is estimated using high-level (e.g., for a whole country or sector) capital-

output ratios, which assume the same levels of productivity and conditions of capital. 

Local values may differ from this estimate due to differences in the type on the 

physicality of capital (i.e., different types of infrastructure), age, depreciation levels, 

sectors, and overall conditions and context.  

B.4.3  SEA-LEVEL RISE AND STORM SURGE  

Rising mean sea levels and temporary flooding from storm surge events threaten coastal 

infrastructure and land. This analysis uses a GIS to estimate the share of assets (i.e., capital and 

land) inundated under various sea-level rise scenarios. Note that this analysis does not conduct a 

detailed geospatial analysis of coastal infrastructure and erosion impacts. The analysis is 

conducted at 30m by 30m spatial resolution and uses sea-level rise projections from the Coupled 

Model Intercomparison Project 6, available via the National Aeronautics and Space 

Administration’s Sea Level Projection Tool (Gerner et al. 2021). While the ensembles used to 

assess this impact channel match the climate scenarios utilized in other channels, outputs for 

individual global climate models are not available. For that reason, we model the 50th and 80th 

percentile of the available Shared Socioeconomic Pathways (including SSP1-1.9, SSP1-2.6, 

SSP2-4.5, SSP3-7.0, SSP5-8.5) to consider more extreme projections within the ensemble 

statistics. These sea level projections are available in 10-year increments from 2020 to 2100 but 

interpolated to develop sea level changes for each year, the time step of this analysis. 

Methodology 

The analysis starts by obtaining elevation data for coastal regions of the country from the 

ASTER Global Digital Elevation Model (NASA, METI 2019). This dataset has a 1m vertical 

resolution and is considered an accurate elevation model. In order to capture increases in sea 

level lower than 1m, we interpolate the DEM to approximately a 1cm vertical resolution.  

The mean sea level is indicated in the DEM by a value of zero. From there, the total water level, 

from where built infrastructure and urbanization typically starts, is constructed by incorporating 

tides, storm surges, and wave runup. We calculate tide and surge based on the mean maximum 

daily tide height from historical tide gauge records for at least 15 years, gathered from the 

University of Hawaii’s Sea Level Center (Caldwell et al. 2015). Figure B103 shows the mean 

daily extreme water levels i.e., the water level above the mean higher high water (MHHW) 

height of each tidal day observed for an illustrative station. We consider an additional 30 cm (1 

ft) as a standard buffer to account for wave runup and high tide events.  
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FIGURE B103.  MEAN DAILY WATER LEVEL EXTREMES (LEVEL ABOVE MEAN HIGH -WATER  

 

Coastal flood inundation extent and depth are approximated using a simplified bathtub approach, 

which does not take into account wave heights, hydraulic connectivity, or dynamic flow 

patterns, and is commonly used in areas without detailed topography and historical records of 

flood extents. This approach overlays sea level heights onto the topography by comparing the 

elevation of the sea or surge height to the elevation of the land and calculating the area inundated 

(i.e., with land elevations below the sea elevation or surge height inundated). To estimate the 

value inundated, we first establish a buffer along the coast where we assume there is no valuable 

infrastructure that is also vulnerable to flood damage. This buffer is established at elevations 

between mean sea level and the high tide mark of the 2-year return period event. After this no-

value buffer, the relative infrastructure value at each elevation contour is determined using the 

area inundated overlayed onto a gridded GDP dataset that is used to estimate the relative value 

of capital loss. Finally, we intersect the inundated areas resulting from discrete sea level rise 

increments with the asset classes of interest to estimate the share that gets inundated. We then 

apply the sea level rise projections, interpolating the percent damages for each particular sea-

level rise increment.  

Storm surge impacts follow a similar approach as the impacts from sea level rise. The main 

difference is the use of a historical storm surge height above mean tidal levels to estimate the 

flood extent and depth of a storm surge event. Here we either rely either on literature sources 

that have already determined the storm surge heights above mean tidal levels for specified return 

period events (e.g., the 100-year or 1 percent annual storm event) or we use a global reanalysis 

dataset of relative storm surge heights estimated at discrete points along the coastline (Muis et 

al. 2016). Just as in the sea level inundation estimate described above, we adjust the storm surge 

flood height with rising sea levels and estimate the extent and depth of the flood using a bathtub 

approach.  

In contrast to the impacts of permanent inundation (i.e., from sea level rise), storm surge impacts 

are both temporary and repairable, even though the cost for repair can be substantial and 

potentially unaffordable for property owners. In this way, it is akin to inland flooding and we 

apply the same depth-damage functions from Huizinga et al. (2017) to estimate the repair costs 

of impacts on capital stock in the macroeconomic model. Without adaptation efforts, we assume 

the costs accrue as the annual expected damage from storm surge increases with sea level rise.   
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There are many adaptation options available to protect properties from storm surges, ranging 

from engineered hard structures like sea walls and higher building elevation, to nature-based 

solutions that can slow down wave velocities. Also, since the near-coast areas become more 

vulnerable to periodic flooding from storm surges as sea levels rise, some property-owners may 

choose to permanently abandon their properties or decision-makers may organize a larger-scale 

managed retreat.  

Limitations 

• The bathtub approach is a simplified model of coastal flood inundation and does not 

capture a hydrologic connection to the ocean. We control for this to some extent by 

limiting the evaluation to a coastal zone where we expect inundation to occur. The 

numerical models that outperform a simpler bathtub approach in storm surge flood 

extent and depth are complex and require extensive, detailed input and field 

measurements to achieve reasonable accuracy.  

• The timing and extent that the mean sea level rises over the next century are uncertain 

because of the many global factors that contribute to the rising sea, including dynamic 

ice sheet melting, changes in the gravitational pull, earth crust rebounding, local vertical 

land movement, among many others. We handle this by evaluating a range of scenarios 

of sea level rise developed with state-of-the-art tools and probability estimates, with 

these estimates updated regularly as the science behind them continues to develop.  

• Adaptation response decisions in the coastal zone are complex, particularly at the local 

level. Other adaptation considerations not captured in this study could include local 

zoning bylaws, future land use plans, the presence of development-supporting 

infrastructure, or proximity to sites with high cultural value.  

• The analysis does not consider the effects of climate on storm surge activity. Estimating 

changes in rare coastal storm events usually requires complex numerical models of both 

the ocean and the atmosphere.  

• Capital value is estimated using high-level (e.g., for a whole country or sector) capital-

output ratios, which assume the same levels of productivity and conditions of capital. 

Local values may differ from this estimate due to differences in the type on the 

physicality of capital (i.e., different types of infrastructure), age, depreciation levels, 

sectors, and overall conditions and context.  

B.4.4  TOURISM  

Climate change may affect tourism through changes in the suitability or attractiveness of a 

particular location for travelers, hence shifting travel patterns across the globe. While cooler 

countries may benefit from additional tourist arrivals, warmer countries may see a decline. The 

analysis relies on estimates of total tourism revenues generated from domestic and international 

as well as from business and leisure travelers. We assume that only leisure travelers are exposed 

to climate change and that business travel is independent of climatic conditions, hence the 

attractiveness of a location only affects revenues from leisure travel.  

Methodology 
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We utilize local data on the total number of travelers and revenue per traveler when available. In 

cases where this data is unavailable or incomplete, we utilize data from the World Travel & 

Tourism Council Country Profiles (WTTC 2022) and the United Nations World Tourism 

Organization (UNWTO 2021) to estimate the size and breakdown of tourism revenues. Then, we 

distribute revenues from international leisure travelers to 0.5 x 0.5 degree grid cells in the 

country using the location of points of interest from the Humanitarian OpenStreetMap Team 

geospatial data (HOTOSM 2020), as well as available literature that accounts for high-revenue 

touristic sites that may be overlooked in the OpenStreetMap data (e.g., the point location of a 

major attraction may represent a higher volume of revenues than a relatively smaller site).  

Impacts on leisure revenues due to changes in average climatic conditions are estimated 

following the approach developed by Hamilton, Maddison, and Tol (2005), which was also 

applied by Roson and Sartori (2016). Hamilton et al. identified the following functional 

relationship between mean annual temperature (T) and total visitor arrivals (A) and departures 

(D): � = ÿý × ÿ(ÿ1×Ā+ ÿ2×Ā2) Ā = ÿ� × ÿ(Ā1×Ā+ Ā2×Ā2) 
The K coefficients represent region-specific constants for all other factors beyond temperature, 

while ³ and ´ are fixed constants that determine the relationship between T and arrivals and 

departures respectively. Figure B104 shows the shape of this coefficient. As seen in the figure, 

arrivals peak around 14° and decline as temperature increases, which indicates that international 

travelers prefer more pleasant (i.e., less hot) destinations. Departures reach a minimum at 19° 

and increase with higher temperatures following the same logic as international travelers.  

FIGURE B104.  FUNCTIONAL RELATIONSHIP BETWEEN TEMPERATURE AND ARRIVALS AND DEPARTURES  

 

We consider the percent change in total arrivals as a proxy for the percent change in revenues 

from international leisure travelers. If available, we utilize seasonal or monthly visitation 

statistics to weigh monthly temperature and estimate a relevant mean annual temperate (i.e., a 
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temperature value that weighs higher in the months with higher demand) to quantify the change 

in arrivals. For changes in domestic leisure travelers, we consider the percent change in total 

departures, which results in a decrease in revenues from an increase in departures (i.e., as a 

region gets hotter, residents will prefer more pleasant locations elsewhere). This approach 

assumes that the mean revenues generated per traveler remain constant as temperatures change.  

A final tourism shock is calculated by aggregating the effect on international and domestic 

leisure revenues, assuming the fraction of revenues from business travel does not change.  

Limitations 

• There are additional biophysical effects derived directly or indirectly from climate 

change that may impact tourism at a local scale, such as algal blooms on bathing waters, 

vector or infectious disease outbreaks, increased erosion on sandy beaches, or losses in 

flora and fauna of interest. These effects are not considered in this study.  

• While the analysis considers the effect on revenues from domestic and international 

tourism, changes in travel patterns within the country, for both domestic and 

international, travelers are not modeled.  
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APPENDIX C: DATA SOURCES  

 

C.1.  LABOR HEAT STRESS  

DATA SOURCE 

LABOR SUPPLY 

Working age population (ages 

15-64) 

Oficina Nacional de Estadistica, Estimaciones y 

proyecciones de la población 2000-2030 (2015). 

United Nations Population Prospects, 1995-2050, medium 

variant estimate. 

Labor force (total employment 

and by sector and occupation) 

International Labor Organization Labor Force Statistics, 

2016-2020 (International Labor Organization 2023)  

Weekly hours worked International Labor Organization Labor Force Statistics, 

2016-2020 (International Labor Organization 2023)  

EXPOSURE AND AIR CONDITIONING 

Outdoor exposure by occupation Occupational requirements survey (Bureau of Labor 

Statistics 2022) 

AC household adoption Encuesta de Hogar de Propósitos Múltiples 2021 

Household size United Nations Household Size and Composition, 2022 

(United Nations 2022a) 

Household income World Bank World Development Indicators, Purchasing 

Power Parity constant 2017 international $ (World Bank, 

n.d.) 

Electricity rates Cable.co.uk. 2021. <The Price of Electricity per KWh in 

230 Countries.= 2021. 
https://www.cable.co.uk/energy/worldwide-

pricing/#resources. 

Air conditioner prices Lutz, Amanda. 2023. <How Much Does a New Air 
Conditioner Cost? (2023 Guide).= Architectural Digest 

(blog). 2023. 

https://www.architecturaldigest.com/reviews/hvac/air-

conditioner-cost. 

LABOR FORCE SPATIAL ALLOCATION 

Population distribution WorldPop United Nations adjusted population counts, 

100m resolution (Tatem 2017) 

GDP distribution Global gridded GDP data set consistent with the shared 

socioeconomic pathways (Wang and Sun 2022) 

https://www.cable.co.uk/energy/worldwide-pricing/#resources
https://www.cable.co.uk/energy/worldwide-pricing/#resources
https://www.architecturaldigest.com/reviews/hvac/air-conditioner-cost
https://www.architecturaldigest.com/reviews/hvac/air-conditioner-cost
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Cropland distribution Copernicus Fractional Land Cover dataset (Buchhorn et al. 

2020) 

 

C.2.  HUMAN HEALTH  

DATA SOURCE 

LABOR SUPPLY & POPULATION 

Working age population (ages 

15-64) 

Oficina Nacional de Estadistica, Estimaciones y 

proyecciones de la población 2000-2030 (2015). 

United Nations Population Prospects, 1995-2050, medium 

variant estimate 

Labor force (total employment 

and by sector and occupation) 

International Labor Organization Labor Force Statistics, 

2016-2020 (International Labor Organization 2023)  

Weekly hours worked International Labor Organization Labor Force Statistics, 

2016-2020 (International Labor Organization 2023)  

HISTORICAL ILLNESS INCIDENCE  

Baseline disease incidence and 

mortality  

Global Burden of Disease Database (Institute for Health 

Metrics and Evaluation 2019) 

 

C.3.  WATER,  SANITATION,  AND HYGIENE  

DATA SOURCE 

LABOR SUPPLY & POPULATION 

Working age population (ages 

15-64) 

Oficina Nacional de Estadistica, Estimaciones y 

proyecciones de la población 2000-2030 (2015). 

United Nations Population Prospects, 1995-2050, medium 

variant estimate. 

Labor force (total employment 

and by sector and occupation) 

International Labor Organization Labor Force Statistics, 

2016-2020 (International Labor Organization 2023)  

Weekly hours worked International Labor Organization Labor Force Statistics, 

2016-2020 (International Labor Organization 2023)  

HISTORICAL ILLNESS INCIDENCE AND WASH COVERAGE 

Baseline disease incidence and 

mortality  

Global Burden of Disease Database (Institute for Health 

Metrics and Evaluation 2019) 

Baseline WASH coverage Joint Monitoring Programme for Water Supply, Sanitation 

and Hygiene, 2021  

 

C.4.  WATER SUPPLY  

DATA SOURCE 

CATCHMENTS AND GEOSPATIAL DATA 

Basin delineation  Received from client 
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Spatial distribution of irrigated 

areas (shapefile) 

Instituto Nacional de 

Recursos Hidráulicos (INDRHI) 

Reservoirs´ location (shapefile) Instituto Nacional de 

Recursos Hidráulicos (INDRHI) 

HISTORICAL FLOWS, WITHDRAWALS, AND DEMAND  

Average country consumption in 

l/ab/day (household, industrial) 

Instituto Nacional de Aguas Potables y Alcantarillados 

(INAPA), 2015. Ap攃Āndice II 

List of industrial sites with daily 

water use in m3 both from 

groundwater and surface water 

Instituto Nacional de Aguas Potables y Alcantarillados 

(INAPA), 2015. Ap攃Āndice II 

Municipal, industrial and 

irrigation water demands 

Plan Hidrológico Nacional 

República Dominicana. Instituto Nacional de 

Recursos Hidráulicos (INDRHI, 2012). 

Wastewater production by 

region (as flow in l/s) 

Instituto Nacional de Aguas Potables y Alcantarillados 

(INAPA), 2015. Ap攃Āndice II 

Historical runoff Global Runoff Data Centre I GRDC (Bundesanstalt für 

Gewässerkunde) 

Irrigation efficiency Plan Hidrológico Nacional 

República Dominicana. Instituto Nacional de 

Recursos Hidráulicos (INDRHI, 2012). 

Environmental flows Plan Hidrológico Nacional 

República Dominicana. Instituto Nacional de 

Recursos Hidráulicos (INDRHI, 2012). 

STORAGE INFRASTRUCTURE 

Max turbine flow  EMPRESA DE GENERACIÓN 

HIDROELÉCTRICA DOMINICANA (EGEHID). 

MEMORIA INSTITUCIONAL 2017-2020 

Reservoirs 8volume and height Presas en Operación por Regiones Hidrográficas en 

República Dominicana.  

INDRHI - Departamento de Presas, 2010 

Capacity factor (number of 

hours in operation) and energy 

production (GWh) 

EMPRESA DE GENERACIÓN 

HIDROELÉCTRICA DOMINICANA (EGEHID). Estadísticas 

Institucionales, 2022. 

Information about dams9 use INVENTARIO NACIONAL DE CANALES DE LOS DISTRITOS DE 

RIEGO. INDRHI, 2006.  

 

C.5.  CROP PRODUCTION  

DATA SOURCE 

CATCHMENTS AND GEOSPATIAL DATA 

Basin delineation  Received from client 
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Spatial distribution of irrigated 

areas (shapefile) 

Instituto Nacional de Recursos Hidráulicos (INDRHI) 

Spatial distribution of crop 

production 

IFPRI. 2019. <Global Spatially-Disaggregated Crop 

Production Statistics Data for 2010 Version 2.0.= 

International Food Policy Research Institute, Harvard 

Dataverse, V4. https://doi.org/10.7910/DVN/FSSKBW. 
CROP STATISTICS 

Crop harvested area and 

production 

FAOSTAT 3 Crops and Livestock Products (FAO 2021) 

Crop revenues FAOSTAT 3 Value of Agricultural Production (FAO 2021) 

Irrigation water demands Plan Hidrológico Nacional 

República Dominicana. Instituto Nacional de 

Recursos Hidráulicos (INDRHI, 2012). 

Irrigated crop area Food and Agriculture Organization, AQUASTAT, Perfil de 

Pais 3 Republica Dominicana, 2015 

IFPRI. 2019. <Global Spatially-Disaggregated Crop 

Production Statistics Data for 2010 Version 2.0.= 
International Food Policy Research Institute, Harvard 

Dataverse, V4. 

CROP CALENDARS, COEFFICIENTS, AND THRESHOLDS 

Crop calendars FAO. 2022. <Crop Calendar: Information Tool for Crop 

Production.= Food and Agriculture Organization of the 

United Nations. 2022. 

https://cropcalendar.apps.fao.org/#/home. 

Crop coefficients Allen, Richard G., Luis S. Pereira, Dirk Raes, and Martin 

Smith. 1998. <Crop Evapotranspiration - Guidelines for 

Computing Crop Water Requirements.= FAO Irrigation and 

Drainage Paper 56. Rome: FAO - Food and Agriculture 

Organization of the United Nations. 

https://www.fao.org/3/X0490E/x0490e00.htm#Contents. 

Crop yield response to water 

coefficients 

Steduto, Pasquale, Theodore C. Hsiao, Elias Fereres, and 

Dirk Raes. 2012. <Crop Yield Response to Water.= FAO 

Irrigation and Drainage Paper 66. Rome: FAO. 

https://www.fao.org/3/i2800e/i2800e00.htm. 

Temperature thresholds FAO. 2015. <Crop Ecological Requirements Database 

(ECOCROP).= Food and Agriculture Organization of the 

United Nations. 2015. https://www.fao.org/land-

water/land/land-governance/land-resources-planning-

toolbox/category/details/en/c/1027491/. 

 

C.6.  EROSION  

DATA SOURCE 

LAND USE LAND COVER  

https://doi.org/10.7910/DVN/FSSKBW
https://cropcalendar.apps.fao.org/#/home
https://www.fao.org/3/X0490E/x0490e00.htm#Contents
https://www.fao.org/3/i2800e/i2800e00.htm
https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1027491/
https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1027491/
https://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1027491/
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Land cover NASA Goddard Space Flight Center. MOD13Q14

MODIS/Terra Vegetation Indices 16-Day L3 Global 250m 

SIN Grid. Available online: 

https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 

January 2022). 

SOIL CHARACTERISTICS AND MANAGEMENT 

Physical properties of soil Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. 

B. M., Kempen, B., Ribeiro, E., and Rossiter, D.: SoilGrids 

2.0: producing soil information for the globe with 

quantified spatial uncertainty, SOIL, 7, 2173240, 

https://doi.org/10.5194/soil-7-217-2021, 2021. 

Slope and slope length Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, 

B., Ranipeta, A., Malczyk, J., and Jetz, W. (2018) A suite 

of global, cross-scale topographic variables for 

environmental and biodiversity modeling. Scientific Data 

volume 5, Article number: 180040. DOI: 

doi:10.1038/sdata.2018.40. 

Historical rainfall-erosivity  Panagos, P.; Borrelli, P.; Meusburger, K.; Yu, B.; Klik, A.; 

Jae Lim, K.; Yang, J.E.; Ni, J.; Miao, C.; Chattopadhyay, 

N.; et al. Global rainfall erosivity assessment based on 

high-temporal resolution rainfall records. Sci. Rep. 2017, 

7, 4175. 

HISTORICAL CROP AREA, PRODUCTION, AND REVENUE STATISTICS 

Crop area, production, and 

revenues 

International Food Policy Research Institute, 2020, 

<Spatially-Disaggregated Crop Production Statistics Data 

in Africa South of the Sahara for 2017=, 
https://doi.org/10.7910/DVN/FSSKBW, Harvard 

Dataverse, V2 

 

C.7.  INLAND FLOODING  

DATA SOURCE 

HYDROLOGY AND TOPOGRAPHY 

Flood curve numbers Wischmeier, Walter H., and Dwight David Smith. 1978. 

Predicting Rainfall Erosion Losses: A Guide to 

Conservation Planning. Washington, DC: U.S. Department 

of Agriculture. 

Annual exceedance probability 

of flooding events  

World Bank9s Climate Knowledge Portal (CCKP) 

Land cover and soil infiltration Buchhorn, Marcel, B. Smets, L. Bertels, M. Lesiv, N. E. 

Tsendbazar, D. Masiliunas, L. Linlin, M. Herold, and S. 

Fritz. 2020. <Copernicus Global Land Service: Land Cover 

100m: Globe (Version V3.0.1).= 
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River network Lehner, Bernhard, and Günther Grill. 2013. <Global River 

Hydrography and Network Routing: Baseline Data and New 

Approaches to Study the World9s Large River Systems.= 

Hydrological Processes 27 (15): 2171386. 

Hydrological basins Linke, Simon, Bernhard Lehner, Camille Ouellet Dallaire, 

Joseph Ariwi, Günther Grill, Mira Anand, Penny Beames, 

et al. 2019. <Global Hydro-Environmental Sub-Basin and 

River Reach Characteristics at High Spatial Resolution.= 
Scientific Data 6 (1): 283. 

https://doi.org/10.1038/s41597-019-0300-6. 

RESOURCES AT RISK 

Capital stock and capital-output 

ratio 

IMF. 2021. <Investment and Capital Stock Dataset (ICSD).= 

International Monetary Fund. 2021. 

https://data.imf.org/?sk=1CE8A55F-CFA7-4BC0-BCE2-

256EE65AC0E4. 

Capital spatial distribution Wang, Tingting, and Fubao Sun. 2022. <Global Gridded 

GDP Data Set Consistent with the Shared Socioeconomic 

Pathways.= Scientific Data 9 (1): 221. 

https://doi.org/10.1038/s41597-022-01300-x. 

Flood damage curves Huizinga, Jan, Hans de Moel, and Wojciech Szewczyk. 

2017. <Global Flood Depth-Damage Functions: 

Methodology and the Database with Guidelines.= EUR 
28552. European Commission, Joint Research Centre. 

https://data.europa.eu/doi/10.2760/16510. 

C.8.  TROPICAL CYCLONES  

DATA SOURCE 

STORM TRACKS 

Tropical cyclone tracks for 

hindcasts and projections 

Purchased from WindRiskTech via Kerry Emanuel. For 

model details and further references, see the following 

paper: Emanuel, K. Atlantic tropical cyclones downscaled 

from climate reanalyses show increasing activity over past 

150 years. Nat Commun 12, 7027 (2021). 

https://doi.org/10.1038/s41467-021-27364-8 

CAPITAL VALUE AND LOCATION 

Gridded GDP Wang, T. and Sun, F.: Spatially explicit global gross 

domestic product (GDP) data set consistent with the 

Shared Socioeconomic Pathways, Earth Syst. Sci. Data 

Discuss. [preprint], https://doi.org/10.5194/essd-2021-

10, 2021. 

Land cover Buchhorn, Marcel, B. Smets, L. Bertels, M. Lesiv, N. E. 

Tsendbazar, D. Masiliunas, L. Linlin, M. Herold, and S. 

Fritz. 2020. <Copernicus Global Land Service: Land Cover 

100m: Globe (Version V3.0.1).= 

https://doi.org/10.1038/s41597-019-0300-6
https://data.imf.org/?sk=1CE8A55F-CFA7-4BC0-BCE2-256EE65AC0E4
https://data.imf.org/?sk=1CE8A55F-CFA7-4BC0-BCE2-256EE65AC0E4
https://doi.org/10.1038/s41597-022-01300-x
https://data.europa.eu/doi/10.2760/16510
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DAMAGE FUNCTIONS 

Damage function Emanuel, Kerry, Fabian Fondriest, James Kossin (2012) 

Potential Economic Value of Seasonal Hurricane 

Forecasts. Vol 4, pgs. 110-117, DOI: 10.1175/WCAS-D-11-

00017.1 

 

C.9.  SEA-LEVEL RISE AND STORM SURGE  

DATA SOURCE 

HYDROLOGY, TIDE GAUGES, AND TOPOGRAPHY 

Sea level rise projections Garner, G. G., T. Hermans, R. E. Kopp, A. B. A. Slangen, 

T. L. Edwards, A. Levermann, S. Nowikci, M. D. Palmer, 

C. Smith, B. Fox-Kemper, H. T. Hewitt, C. Xiao, G. 

Aðalgeirsd漃Āttir, S. S. Drijfhout, T. L. Edwards, N. R. 

Golledge, M. Hemer, R. E. Kopp, G. Krinner, A. Mix, D. 

Notz, S. Nowicki, I. S. Nurhati, L. Ruiz, J-B. Sall攃Āe, Y. Yu, 

L. Hua, T. Palmer, B. Pearson, 2021. IPCC AR6 Sea-Level 

Rise Projections. Version 20210809. PO.DAAC, CA, USA. 

Dataset accessed [YYYY-MM-DD] at 

https://podaac.jpl.nasa.gov/announcements/2021-08-09-

Sea-level-projections-from-the-IPCC-6th-Assessment-

Report. 

Historical mean tidal levels Carrère et al. FES 2012: A new global tidal model taking 

advantage of nearly 20 years of altimetry. in Proceedings 

of 20YPRA symposium 338 (2012). 

Surge and extreme sea level 

exceedance curves 

Muis et al. (2016) A global reanalysis of storm surges and 

extreme sea levels. Nature Communications. doi: 

10.1038/NCOMMS11969 

Topography Earth Resources Observation And Science (EROS) Center. 

(2017). Shuttle Radar Topography Mission (SRTM) 1 Arc-

Second Global [Data set]. U.S. Geological Survey. 

https://doi.org/10.5066/F7PR7TFT 

CAPITAL VALUE AND LOCATION 

Gridded GDP Wang, T. and Sun, F.: Spatially explicit global gross 

domestic product (GDP) data set consistent with the 

Shared Socioeconomic Pathways, Earth Syst. Sci. Data 

Discuss. [preprint], https://doi.org/10.5194/essd-2021-

10, 2021. 

Land cover Buchhorn, Marcel, B. Smets, L. Bertels, M. Lesiv, N. E. 

Tsendbazar, D. Masiliunas, L. Linlin, M. Herold, and S. 

Fritz. 2020. <Copernicus Global Land Service: Land Cover 

100m: Globe (Version V3.0.1).= 

DAMAGE FUNCTIONS 
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Damage functions by building 

type 

Huizinga, Jan, Hans de Moel, and Wojciech Szewczyk. 

2017. Global Flood Depth-Damage Functions: Methodology 

and the Database with Guidelines. EUR 28552. European 

Commission, Joint Research Centre. 

 

 

C.10.  TOURISM  

DATA SOURCE 

TOURISM AND TRAVEL DATA 

Monthly arrivals of passengers 

by residence and airport used, 

2019 

Central Bank of the Dominican Republic, Department of 

National Accounts and Economic Statistics, 2019 

Monthly departures of 

passengers by residence and 

airport used, 2019 

Central Bank of the Dominican Republic, Department of 

National Accounts and Economic Statistics, 2019 

Tourism revenues  World Travel & Tourism Council, Dominican Republic 

Annual Research, 2022 

Punta Cana revenues Hedrick-Wong, Y.; Choong, D. MasterCard 2015 Global 

Destination Cities Index. Tracking Global Growth: 2009-

2015; Mastercard: New York, NY, USA, 2016. 

POINTS OF INTEREST AND LOCATION 

Tourism Points of Interest 

Database 

OpenStreetMap 2023, 2015 
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ADDENDUM TO ANNEX 2: DOCUMENTATION OF INVESTMENT COST 
ESTIMATES FROM IEC WORK  
 
Estimations of costs and benefits of mitigation and adaptation activities are based on 
inputs from sector teams and existing World Bank work on decarbonization in the 
Dominican Republic, including those of IEc presented above. Below are data sources for 
each component of the analysis, broken out into mitigation and adaptation actions.  
 

Mitigation 

 

For energy and transport, the approach taken was to take investment costs provided by 
the sector teams, and use inputs provided from sector teams on avoided fuel use, and 
improved productivity to estimate benefits and co-benefits of the investments. Energy 
inputs came from Electricity Planning Model model, transport results were estimated 
from modelling completed by the transport team, and coefficients on the benefits from 
avoided fuel use and air pollution mortality results were taken from the Carbon Pricing 
Assessment Tool. For land use, prior work on decarbonization had developed Marginal 
Cost Curves for land use and AFOLU investments and the initial investment costs were 
also provided as a time series. These were used to estimate annual investment needs as 
well as the economic benefits of the interventions. 
 
 Costs Quantified Benefits Quantified in Monetary 

Terms 

Power Capital Investment + grid 
integration 

CO2  

Avoided Fuel consumption 

Air pollution mortality avoided 

Transport Public investments 3 BEV, 
HEV, Modal shift 

CO2 avoided 

Avoided Fuel consumption 

Air pollution mortality avoided 

Traffic accidents avoided 

Road damage avoided 

AFOLU REDD+ Implementation and 
transaction costs 

Opportunity costs of land use in terms 
of revenue 

 
Adaptation 

 

For SLR, Cyclones, Inland, and Coastal Flooding, costs are taken from modelling by 
IEC as a fraction of capital stock and converted to 2022 USD. Benefits are expressed as 
avoided capital damages also from inputs provided by IEC. For Heat Stress, water 
infrastructure, and crop production, investments include both capex and opex in USD 
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dollar values provided by IEc. Benefits are expressed in the units provided by IEc as 
well: %loss productivity, % yield loss, % unmet demand.  
 
 Costs Quantified Benefits Quantified in Monetary 

Terms 

SLR/Storm Surge Capital costs Avoided damages 

Cyclones Capital costs Avoided damages 

Heat Stress capital + operations costs Labor productivity loss averted 

Crops capital + operations costs Crop yield loss averted 

Water M&I capital + operations costs Reduction in unmet demand 

 
 
 


