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Forest loss and fire in the Dominican Republic during the
21st Century

Abstract

Forest loss is an environmental issue that threatens valuable ecosystems in

the Dominican Republic (the DR). Although shifting agriculture by slash-and-

burn methods is thought to be the main driver of forest loss in the DR, empirical

evidence of this relationship is still lacking. Since remotely sensed data on fire

occurrence is a suitable proxy for estimating the spread of shifting agriculture,

here I explore the association between forest loss and fire during the first 18

years of the 21st Century using zonal statistics and spatial autoregressive mod-

els on different spatio-temporal layouts. First, I found that both forest loss and

fire were spatially autocorrelated and statistically associated with each other at

a country scale over the study period. The hotspots were concentrated mainly

in Cordillera Central, Sierra de Bahoruco, Los Haitises/Samaná Peninsula, and

the northwestern and easternmost regions. Second, from regional scale analysis,

I found no statistical association between forest loss and fire in the eastern half

of the country, a region that hosts a large international tourism hub. Third,

deforestation and fire showed a joint cyclical variation pattern of approximately

four years up to 2013, and from 2014 onwards deforestation alone followed a

worrying upward trend, while at the same time fire activity declined signifi-

cantly. Fourth, I found no significant differences between the deforested area

of small (<1 ha) and large (>1 ha) clearings of forest. I propose these find-

ings hold potential to inform land management policies that help reduce forest

loss, particularly in protected areas, mountain areas, and the vicinity of tourism

hubs.

Keywords: deforestation, spatial autoregressive models, spatial

autocorrelation, forest cover, forest change
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1. Introduction

Deforestation is a major concern for countries embracing the achievement of

Sustainable Development Goal 15 (Department of Economic and Social Affairs

of the United Nations Secretariat, 2009; UN System Task Team on the Post-

2015 UN Development Agenda, 2012). During the last decades, most countries5

have established reforestation programs to halt and reverse land degradation,

but little effort has been made in preventing forest loss in preserved areas and

secondary forests. In addition, a conceptual framework for developing indicators

for the SDG 15 is missing, making it hard to assess whether or not the goal is

being met (Hák et al., 2016).10

A global assessment of 21st-Century forest cover change, derived from Land-

sat satellite observations, was published in 2013 and has since been updated

yearly (Hansen et al., 2013). Several research teams used the outcomes of

Hansen et al.’s work to assess the changes and trends of forest cover in different

countries (Kalamandeen et al., 2018) and to explore the causes of deforestation15

(e.g., commodity-driven deforestation, shifting agriculture, and wildfires) Curtis

et al. (2018). Although Tropek et al. (2014) commented that the study under-

estimates forest loss, Hansen et al. (2014) argued that such criticism is based

on a misconception of the definition of forest used in their study.

Despite the ecological importance of the forest ecosystems in the Dominican20

Republic (hereafter, the DR) (Hager & Zanoni, 1993; Cámara Artigas, 1997;

Olson et al., 2001; Cano & Veloz, 2012), comprehensive assessments of forest

loss are rare. The available evidence suggests that there is a close relationship

between forest loss and shifting agriculture, the latter driven mainly by slash-

and-burn practices (Cámara Artigas, 1997; Zweifler et al., 1994; Lloyd & León,25

2019; Wendell Werge, 1974; Ovalle de Morel & Rodríguez Liriano, 1984; OEA,

1967; Tolentino & Peña, 1998; Myers et al., 2004). Although the Ministry of

Agriculture and the National Bureau of Statistics of the DR have conducted

agricultural censuses, their efforts have failed to provide consistent and spatially
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dense data on the intensity and extent of shifting agriculture activity over the30

last decades (ONE, 1982, 2016). Therefore, even a simple correlation analysis

between forest loss and agricultural activity is unfeasible with the available

data published by government institutions. A further limitation is the fact that

traditional regression analysis cannot to provide a systematic assessment of

statistical association between variables that exhibit spatial autocorrelation, so35

spatial autoregressive models are needed (Anselin, 2013; Bivand et al., 2013b).

Considering these limitations, I explore here the statistical associations be-

tween fire and forest loss in the DR in the first 18 years of the 21st Century,

using spatial autoregressive models applied to public data remotely and con-

sistently collected. Specifically, and referring to those 18 years, I answer the40

following questions: 1) Was fire statistically associated with forest loss? 2) If

so, was fire a suitable predictor of forest loss? 3) Was there a greater degree of

association of fire with small forest clearings than with larger ones? 4) What

did the spatio-temporal patterns of forest loss and fire look like? 5) Did a trend

exist in either or both variables? I hypothesize that both fire and forest loss45

were significantly and increasingly associated over time, that fire was a suitable

predictor of forest loss regardless of the size of the clearings, and that both fire

and forest loss were spatially autocorrelated over the study period.

This is the first study providing empirical evidence of the association be-

tween fire and forest loss in the DR. I assert that the results obtained increase50

knowledge on spatio-temporal patterns of forest loss. In addition, the findings

could assist decision-makers in assessing the achievement of the SDGs, and in

designing more effective policies for the long-term planning of nature conserva-

tion and fire management.

2. Materials and methods55

2.1. Data download and preparation

I used two types of datasets for this research: the collection of forest change

layers from Hansen et al. (2013) and the fire point/hotspot locations from NASA
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Figure 1: Loss year layer from 2001 to 2018 for the Dominican Republic, according

to Hansen et al. (2013). Labelled points denote the location of some cities chosen as

reference.

(2019a,b). From the forest change data, I used the loss year and the tree cover

thematic tiles, which I downloaded from the Global Forest Change 2000-201860

data service (Hansen/UMD/Google/USGS/NASA, 2019). The tree cover tiles

classify the land area in tree canopy densities for the year 2000 as a baseline—

where trees mean “vegetation taller than 5 m in height”—and the loss year tiles

record the first year when the canopy reduced its density relative to the baseline

year. I stitched together the tiles from these datasets to form a seamless mo-65

saic, and then warped the results on to the UTM/WGS84 datum, from which I

later produced continuous maps of the DR mainland territory by masking out

the ocean/lake areas (Fig. 1). Since these products do not distinguish planta-

tions (e.g., oil palm and avocado plantations) from forest, I acknowledged this

limitation when running exploratory analysis and building spatial models.70

Moreover, the fire/hotspot data consisted of two products of the NASA’s

Fire Information for Resource Management System (FIRMS) processed by the

4
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University of Maryland, provided as point layer files by the LANCE/ESDIS

platform, covering two overlapping periods of time (NASA, 2019a,b). The most

comprehensive dataset, labeled as “MODIS Collection 6 standard quality Ther-75

mal Anomalies / Fire locations” (MCD14ML), comprised fire data from 2000

to the present. The MODIS point location represents the center of a 1-km

pixel containing one or more fires within the pixel. The second product, la-

beled as “VIIRS 375m standard Active Fire and Thermal Anomalies product”

(VNP14IMGTML), comprised locations of fires and thermal anomalies since80

2012 up to the present time. In this dataset, each point represents the center of

a 375m pixel with at least one fire/thermal anomaly within the pixel. There-

fore, given the improved spatial resolution of the VIIRS sensor, it records more

fire points than the MODIS sensor.

The FIRMS source web service states that there are missing data at known85

dates in the MODIS product, but, since this issue affects a minimal portion of

the time series, I decided to acknowledge it and use the entire dataset without

applying missing data algorithms.

Most of the data points from both MODIS and VIIRS collections accounted

for actual fires and thermal anomalies, but there were also noisy records (e.g.,90

false positives) that could affect the results. Thus, I removed the persistent

thermal anomalies records and other unrelated fire points, such as those origi-

nating from landfills with spontaneous combustion and industrial furnaces. For

the purpose, I wrote an algorithm that spotted extremely dense point clusters.

Afterward, I confirmed whether those clusters fell into industrial or landfill ar-95

eas, by visually checking with base maps and satellite images. In most cases,

those points were tagged as “other static land source” in the “Type” field of the

datasets. Points that met at least the visual examination criteria were excluded

from the dataset. In addition, I excluded all points with a confidence value of

less than 30% in the MODIS collection, as well as those with a “low confidence”100

tag in the VIIRS collection. I refer to the resulting outcomes as “the noise-free

versions of the fire points datasets” or simply “the noise-free versions” (Fig. 2).
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Figure 2: MODIS dataset from 2001 to 2018 for the DR mainland. This is a noise-

free version of the original dataset, which excludes unrelated fire points (e.g., burning

landfills and industrial furnaces). See text for details.

Last, I applied a mask comprising the DR land area to each dataset used

in the study. I generated the mask by combining a shapefile containing the

international DR border, downloaded from ONE (2015), with the datamask105

included in the forest change dataset. Permanent water bodies were excluded

from the analysis, using their extent area as seen in the 2000 Landsat ETM+

imagery. For consistency reasons, I reprojected the point data files to conform

to the UTM/WGS84 datum.

2.2. Spatio-temporal approaches110

I used two different spatio-temporal approaches to answer the questions

posed in this study, which I refer to as “the long-term approach” and “the an-

nual approach”, respectively. In both approaches, I applied spatial statistics

techniques to explore association patterns between forest loss and fire, using

statistical summaries generated from zonal grids and value layers.115
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2.2.1. Long-term approach

In this approach, I assessed the association between forest loss and fire in

two overlapping periods—2001-2018 and 2012-2018—using a zonal grid. I fo-

cused the analysis on the areas with 25% or higher tree cover in year 2000 as

a baseline, which I refer to as “forest cover in 2000”, or simply “forest cover”120

(Fig.A1). The zonal grid consisted of 482 adjacent hexagons, each with a nom-

inal surface area of 100 km2 and having at least 45% of its area on mainland

territory (Fig.A1). With this setting, the total area of the zonal grid was ap-

proximately 46,200 km2, which is indeed slightly smaller than the DR territory

(approximately 48,400 km2).125

To generate the fire data layers, I used the noise-free versions of the MODIS

and VIIRS datasets separately as inputs. From the former, I filtered the records

for the period 2001-2018, and, from the latter, those for the period 2012-2018.

Afterward, for each period, I selected the fire points falling into forest stands

with a canopy closure equal to or greater than 25%, which I generated from the130

year 2000 tree cover raster layer. Then, I computed the number of fire points

from both datasets for each hexagon of the zonal grid. Last, I divided the

number of points by the cell area in square kilometers, and then again by the

number of years of each of the two periods of analysis, from which I obtained

two data fields, one for each period of analysis, containing the average density135

of fire points per square kilometer per year (hereafter, fire density).

Moreover, I generated two raster layers of forest loss, one for each period of

analysis, by reclassifying twice and separately the loss year raster. The values

from 1 to 18 and from 12 to 18 were then reclassified into one pooled category

of forest loss for the periods 2001-2018 and 2012-2018, respectively. Thereafter,140

for each hexagon of the zonal grid, I computed the surface area of forest loss

per unit area by dividing the forest loss surface area by the corresponding cell

size, and then again by the number of years of each period, to obtain two data

fields, one for each period of analysis (i.e., 2001-2018 and 2012-2018) of average

forest loss per unit area per year.145
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While the long-term approach provides a useful summary of the relationships

between fire density and forest loss for the period analyzed, most of the trends,

cyclical variation, and other insightful patterns would remain unknown without

an annual analytical approach.

2.2.2. Annual approach150

For this approach, I analyzed temporal trends and statistical association

between forest loss and fire on an annual basis. In particular, I focused on

assessing the association between those variables considering the size of the

forest clearings, using both absolute values and zonal statistics metrics.

To obtain the absolute forest loss data, I generated 18 maps of annual forest155

loss, one per each year of the study period, using the loss year raster as a

source. From each map, I grouped the connected cells belonging to the same

patch using the Queen’s case neighborhood, and then calculated the surface

area of the clumped patches. Afterward, using Boolean operators, I generated

18 annual forest loss maps of “small forest clearings”, made up of patches less160

than 1 ha in size, and 18 maps of “medium- and large-sized forest clearings” (or

simply “large clearings”), consisting of patches larger than 1 ha in size. Then, I

computed the annual forest loss separately by size of clearing, summing up the

surface area values of the individual patches of each loss map. Finally, I assessed

the homogeneity of annual average values using paired t-test and Wilcoxon test.165

In addition, I performed zonal statistic analyses, by summarizing annual

forest loss and fire density over a regular hexagon grid of 253 hexagons, each

of which had a maximum area of approximately 195 km2. I used a regular grid

with larger cells than those of the grid used in the long-term approach, to reduce

the skewness of the variables summarized or, in a best-case scenario, to improve170

adherence to normality assumption.

To perform the zonal statistics analysis of forest loss, I used separate metrics

for large and small clearings. For large clearings, I used the relative area of

annual forest loss (measured in km2 per 100 km2), since that metric is suitable

for characterizing the deforestation activity on a given cell. For small clearings,175
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density of patches (measured in number of patches per 100 km2) was used, since

the relative area may be irrelevant for summarizing small clearings on a given

cell.

To obtain the yearly subsets of fire points, I used the noise-free versions of

MODIS and VIIRS datasets from two overlapping periods, 2001-2018 and 2012-180

2018, respectively. I generated annual maps of fire points using the date field

of the datasets. Then, from the annual maps of large clearings, buffer zones

were created around the patches at a maximum distance of 2.5 km. Afterward,

I generated the corresponding annual subsets of fire points, selecting only those

falling within the patches and/or their buffer zones (Fig. B1). Last, I summa-185

rized, over the hexagon grid, the yearly density of fire points per 100 km2.

2.3. Exploratory spatial data analysis and spatial modeling

For both the long-term and annual approaches, I conducted exploratory spa-

tial data analysis (ESDA) and fitted several spatial models using the maximum

likelihood estimation method. First, I assessed the normality of the variables190

using Shapiro-Wilk tests and QQ plots, and applied Tukey’s Ladder of Power

transformations to those variables departing from normality before performing

spatial analysis (Mangiafico, 2019).

Afterward, for each of the grids used in this study, I created neighbour

objects between hexagons based on the criterion of contiguity. As expected,195

each hexagon became the neighbour of six other contiguous hexagons, except

for those located at the edge of the grid. Then, I defined spatial weights from

the neighbour objects using the “W-style”—row standardization—, in which the

weights of all the neighbour relationships for each areal unit summed 1.

As a prerequisite for spatial modeling, I tested whether fire density and200

forest loss variables showed spatial autocorrelation, using Moran scatterplots

and Moran’s I tests. I also generated local indicators of spatial association

maps (hereafter “LISA maps”), to represent high-high and low-low clusters of

fire density and forest loss across the DR (Bivand et al., 2013b,a; Bivand &

Piras, 2015; Bivand et al., 2017; Bivand & Wong, 2018; Anselin, 1995; Anselin205
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& Rey, 2010; Anselin, 1996). A high-high cluster—hereafter HH cluster—is

a group of cells in which high values are surrounded primarily by other high

values. Conversely, a low-low cluster—hereafter LL cluster—is a group of cells

with low values surrounded by other low values.

All the models generated for both the long-term and the annual approaches210

used fire density as a predictor variable and forest loss as a response variable.

Since both variables showed significant patterns of spatial autocorrelation, I

analyzed the statistical association between them using spatial models. In the

long-term approach, I evaluated the prediction performance of spatial lag and

spatial error models. The most suitable model for each approach was chosen215

based on the results of the Lagrange Multiplier diagnostic for spatial dependence

in linear models, the heteroskedasticity of residuals tests, and the Akaike infor-

mation criterion (AIC) (Bivand et al., 2013b; Sakamoto et al., 1986; Breusch

& Pagan, 1979; Anselin, 2013; LeSage, 2015). In the annual approach, I gen-

erated yearly spatial error models to assess the statistical association between220

fire and forest loss. In general, and unless otherwise indicated, for all statistical

tests, I used a significance level α = 0.05, and for error estimation I used a 95%

confidence level.

The final stage was to produce all the results, including statistical sum-

maries, maps, and graphics in QGIS and R programming environment, using225

parallel computing packages for generating the zonal statistics outcomes, as well

as multiple packages for data visualization and spatial modeling (QGIS Devel-

opment Team, 2020; R Core Team, 2020; Pebesma, 2018, 2019; Kuhn et al.,

2019; Greenberg & Mattiuzzi, 2018; Weston, 2019; Hijmans, 2019; Venables &

Ripley, 2002; Tennekes, 2018; Wickham, 2017).230

3. Results

3.1. Long-term approach

The surface areas of forest loss relative to the forest cover in the year 2000,

were approximately 3,100 km2 and 1,500 km2 during the periods 2001-2018 and

10
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2012-2018, respectively, which represent c. 7% and 3% of the entire grid an-235

alyzed (Table 1). Moreover, during the same periods, the MODIS and VIIRS

sensors recorded almost 11,600 and 25,200 points within forest cover areas, re-

spectively.

Table 1: Forest loss and number of fire points within forest cover, summarized using a

grid of 482 hexagons, for the periods 2001-2018 and 2012-2018. The baseline year for

the forest is 2000†.

Attribute
Period 2001-2018

(fire data from MODIS)

Period 2012-2018

(fire data from VIIRS)

Total number of fire points 11,666 25,231

Average number of fire

points per 100 km2 25.13 54.86

Average number of fire

points per 100 km2 per year
1.4 7.84

Maximum number of fire

points per 100 km2 per year
13.22 67.29

Total forest loss area in km2

(approximate percentage

relative to the entire grid)

3135.22 (6.8%) 1461.42 (3.2%)

Average forest loss area

(km2) per 100 km2 6.72 3.13

Average forest loss area

(km2) per 100 km2 per year
0.37 0.45

Maximum forest loss area

(km2) per 100 km2 per year
1.82 3.21

† The values of this table were summarized using zonal statistics techniques relative to a

hexagonal grid. Thus, actual values of the entire DR are slightly larger, since forest loss

patches and fire points outside the grid were ignored.

Most of the DR mainland territory experienced low levels of forest loss from

2001 to 2018 (i.e., < 6 km2 per 100 km2). However, high levels of forest loss were240

common in several mountain ranges and protected areas, such as Los Haitises

karst region, Samaná Peninsula, Sierra de Bahoruco, and the Cordillera Central

southern and northwestern borders (see Fig. 3-A). It should be particularly em-

phasized that inaccessible areas in Los Haitises, Sierra de Bahoruco and south-

ern Cordillera Central, reached worrisome records of forest loss greater than245

25 km2 per 100 km2. Additionally, the Eastern Region—Punta Cana and its

11
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Figure 3: Forest loss (in km2 per 100 km2) for the periods (A) 2001-2018 and (B) 2012-

2018. Number of fire points per 100 km2 within forest cover for the periods 2001-2018

using MODIS dataset (C), and 2012-2018 using VIIRS dataset (D). The baseline year

for forest cover is 2000. Reference locations: 1 Los Haitises; 2 Samaná Peninsula; 3

Cordillera Central mountain range; 4 Sierra de Bahoruco; 5 Cordillera Septentrional;

6 Sierra de Neyba; 7 Eastern Region.

surroundings, where tourism development has grown steadily since the 1990s—

experienced high rates of forest loss during this period. Moreover, between 2012

and 2018, widespread forest loss occurred in Los Haitises and the eastern border

of Cordillera Central (Fig. 3-B).250

Furthermore, the density of fire points showed a distribution pattern similar

to that of forest loss. In both periods, 2001-2018 and 2012-2018, high densities

of fire points were fairly common in many areas, such as the southern margin

of Cordillera Central, Sierra de Bahoruco, Sierra de Neyba, and Los Haitises,

with more than 30 and 65 fires per 100 km2 detected by MODIS and VIIRS,255

respectively (Figs. 3-C and 3-D).

Since both fire density and forest loss departed significantly from normality, I

transformed them using the Tukey’s Ladder of Powers method. As a result, for-

est loss fulfilled the normality assumption and fire density reduced its skewness.

12
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Afterward, I evaluated the spatial autocorrelation of the transformed variables260

using LISA maps, Moran’s I tests, and Moran scatterplots, which consistently

showed positive autocorrelation patterns (TableA1, Figs. 4 andA2).

The prevalence of HH clusters indicates that forest loss was notably

widespread during the periods 2001-2018 and 2012-2018 in Los Haitises, Sierra

de Bahoruco, Samaná Peninsula, and the Eastern Region (Figs. 4-A and 4-B).265

Furthermore, the analysis of the 2012-2018 period exclusively shows that HH

clusters were almost absent in the northwestern and southern margins of

Cordillera Central, and in western Cordillera Septentrional as well (Fig. 4-B).

Finally, LL clusters of forest loss represented areas of intensive farming and/or

where forest cover was absent in 2000.270

Figure 4: LISA maps of forest loss per unit area averaged per year for the periods

(A) 2001-2018 and (B) 2012-2018, and fire points per km2 averaged per year within

forest cover for the same periods using MODIS (C) and VIIRS (D) datasets. The

Tukey’s Ladder of Powers transformed versions of the variables were used as inputs in

all cases. Each hexagon was classified either as HH cluster (red), LL cluster (blue), or

no significant spatial association (grey) regarding the corresponding variable.

Moreover, HH clusters of fire density were notably widespread in the south-

ern margin of Cordillera Central, Los Haitises, western Cordillera Septentrional,
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Sierra de Neyba, and Sierra de Bahoruco (Figs. 4-C and 4-D). There is a notice-

able high degree of agreement between forest loss and fire density LISA maps

in Los Haitises, Sierra de Bahoruco, and other areas, suggesting that an as-275

sociation exists between these variables. A notable exception is the Eastern

Region, where HH clusters of forest loss were not correspondingly matched by

HH clusters of fire points.

I fitted spatial lag and spatial error models to predict forest loss as a function

of fire density for both 2001-2018 and 2012-2018 periods. To generate the models280

of the first period, I used forest loss per unit area per year from 2001 to 2018 as

the dependent variable, and MODIS fire points per square kilometer per year

of the same period as the independent variable. For the second period, I used

forest loss per unit area per year from 2012 to 2018 as the dependent variable,

and VIIRS fire points per square kilometer per year of the same period as the285

independent variable. In all cases, the Tukey’s Ladder of Powers transformed

versions of the variables were used as inputs.

The results of the Lagrange Multiplier tests indicated that a spatial error

specification was suitable for the data of the 2001-2018 and 2012-2018 periods

(TableA2). The relevant statistics of the spatial error models fitted are sum-290

marized in Table 2. Both the coefficient and the intercept estimates for each

model were positive and significant in the spatial error models (p ≪ 0.01). In

particular, the intercept estimate of the 2012-2018 model, which used VIIRS

fire density as an explanatory variable of forest loss, was remarkably high. AIC

values were lower in spatial error models than those of their equivalent lineal295

models. In addition, the Breusch-Pagan and Moran’s I tests showed no trace

of heteroskedasticity and spatial autocorrelation of residuals, respectively.

Lastly, considering only fire as a driver of forest loss, on average, each fire

point detected by the MODIS sensor between 2001 and 2018 and by the VIIRS

sensor between 2012 and 2018 was associated with 1.5 ha and 3 ha of forest loss,300

respectively, implying a substantial effect size of fire density on forest loss in the

DR.
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Table 2: Spatial error model fitting results of forest loss as a function of fire density

for the periods 2001-2018 (MODIS fire data) and 2012-2018 (VIIRS fire data)

Summary

statistic

FORESTLOSS0118∼

FIRESMODIS†

FORESTLOSS1218∼

FIRESVIIRS†

Intercept (Std. Error;

Pr(> |z|))
0.099 (0.005; p ≪ 0.01) 0.173 (0.008; p ≪ 0.01)

Coefficient (Std. Error;

Pr(> |z|))
0.250 (0.015; p ≪ 0.01) 0.247 (0.014; p ≪ 0.01)

λ (LR test value, p-value) 0.732 (243.26; p ≪ 0.01) 0.740 (252.43; p ≪ 0.01)

Moran’s I test for residuals

(p-value)
-0.002 (p = 0.5) -0.016 (p = 0.69)

Breusch-Pagan test statistic

(p-value)
0.46 (p = 0.5) 3.58 (p = 0.06)

AIC (AIC for standard linear

model)
-2183.9 (-1942.7) -1865.5 (-1615.1)

Nagelkerke pseudo-R2 0.60 0.62
†FORESTLOSS0118 and FORESTLOSS1218 stand for the transformed versions of forest

loss per unit-area averaged per year of the periods 2001-2018 and 2012-2018, respectively.

FIRESMODIS and FIRESVIIRS stand for the transformed versions of number of fires per

km2 averaged per year, detected by the MODIS sensor (2001-2018) and by the VIIRS sensor

(2012-2018), respectively.

3.2. Annual approach

Using a paired t-test, I found no significant differences between proportional

deforestation area originated from small and large clearings—t=-2.08, df=17,305

p=0.053. Furthermore, in several years of the study period (2001, 2003, 2011),

the total area of deforestation originated from small clearings was greater than

that from large clearings (see Fig. 5).

The yearly average forest loss area recorded in large clearings was

0.2 km2/100 km2, and reached a maximum of nearly 0.4 km2/100 km2. Further,310

the yearly average number of small clearings was 237 patches per 100 km2, and

the maximum reached approximately 400 patches per 100 km2 (see Figs. 6.A-B

and B2.A-B). Regarding fire density, the MODIS sensor detected nearly two

fire points per 100 km2 per year on average, and a maximum of 3.5 points per

100 km2 per year. Finally, the VIIRS sensor detected, from 2012 to 2018, 9 fire315

points per 100 km2 per year on average, and 12 fire points at most (see Figs.
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Figure 5: Composition of annual forest loss area by size of clearing

6.C-D and B2.C-D). The higher hotspot detection rate of the VIIRS sensor

compared to that of the MODIS sensor is due to its higher spatial resolution.

Forest loss activity and fire occurrence showed a joint four-year cyclical pat-

tern of variation during most of the period investigated. However, the time-series320

of forest loss and fire activity diverge considerably from each other, starting in

2014. In particular, forest loss increased rather steeply from 2014 to 2017,

whereas the number of fire points decreased significantly during the same pe-

riod (Fig. 6). Hence, this is the first time in the past two decades in which fire

and forest loss followed diverging trends nationwide.325

Regarding spatio-temporal features, both forest loss and fire density showed

patterns of cyclical variation of their spatial autocorrelation, and featured mul-

tiple spatial layouts of HH clusters and LL clusters in shifting locations through-

out the DR over the period under investigation. Moran’s I tests, which were
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Figure 6: Yearly averages per 100 km2 of (A)Forest loss area (in km2) of large clearings

(>1 ha in size); (B)Number of small clearings (<1 ha in size); (C) and (D) Number

of fire points remotely sensed by MODIS and VIIRS sensors in or around forest loss

patches

applied to the transformed versions of the variables, yielded significant results330

for every year of the study period. In addition, the Moran’s I test statistic

showed a cyclical and varied pattern for all the variables analyzed over the

study period (Fig. 7).

Concerning patterns of forest loss, the HH clusters were concentrated mainly

in five locations during the study period: Los Haitises-Samaná Peninsula,335

Cordillera Central, Sierra de Bahoruco, and Northwestern and Eastern Regions,

the last being the largest tourism hub of the DR—including the resort town of
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Figure 7: Moran’s I evolution for the transformed versions of yearly averages per

100 km2 of (A)Forest loss area of large clearings (>1 ha in size); (B)Number of small

clearings (<1 ha in size); (C) and (D) Number of fire points located inside or around

forest loss patches, remotely recorded by MODIS and VIIRS sensors, respectively

Punta Cana and other tourist destinations (Figs. 8, 9, B3 and B4). The Eastern

Region, in particular, showed very distinctive spatio-temporal patterns of forest

loss over the study period; therefore, I analyzed that region separately.340

During the three-year period 2001-2003, HH clusters of both small and large

forest clearings were concentrated in Los Haitises-Samaná Peninsula and at the

southern and northern ends of western DR. From 2004 to 2012, large forest clear-

ings were significantly concentrated in the northwest of the DR—which peaked

in 2004, and in the periods 2006-2008 and 2010-2011, in southern Cordillera Cen-345

tral and Sierra de Bahoruco. In addition, HH clusters of small clearings were

widespread in Los Haitises in 2003, 2005, 2007-2008, and 2010. Subsequently,

during the period 2013-2018, HH clusters of both large and small clearings were

concentrated in Los Haitises and in Samaná Peninsula, as well as in western

and southeastern portions of Cordillera Central and Sierra de Bahoruco. Of350

note was widespread deforestation in Los Haitises and its southern end, which

comprises an active oil palm plantation. These hotspots are shown on the LISA

maps by large HH clusters of small clearings during the period 2013-2014, as

well as by HH clusters of both large and small clearings in the period 2017-2018.
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Figure 8: Yearly LISA maps of transformed forest loss density data of large clearings.

Red represents HH clusters, blue depicts LL clusters, and grey shows no significant

spatial association.

Figure 9: Yearly LISA maps of transformed forest loss density data of small clearings.

Same legend as in Fig 8.

In addition, concerning the Eastern Region, HH clusters of large clearings355

began to develop in 2002 and stopped in subsequent years, then emerged inter-

mittently from 2005 onwards, showing peaks of activity in 2009 and 2011 and a

steady increase between 2013 and 2018. Notably, HH clusters of small clearings

were detected in this region in 2003, in 2005-2009, and in years 2011 and 2013,

but no new clusters of this type were observed in subsequent years.360

Regarding fire density, during the entire period investigated, HH clusters

were concentrated especially in the western half of the DR, particularly in the
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Northwestern Region, Sierra de Bahoruco, and Cordillera Central (Figs. 10, 11,

B5 and B6). Also, during both the first years and in the middle of the period,

HH clusters were present in Los Haitises and Samaná Peninsula.365

Figure 10: Yearly LISA maps of transformed MODIS fire density data. Same legend

as in Fig 8.

Figure 11: Yearly LISA maps of transformed VIIRS fire density data. Same legend as

in Fig 8.

As shown in the LISA maps of MODIS fire density, the spatial patterns of fire

density slightly resembled those of forest loss over the period under study (Fig.

10). However, the degree of agreement between forest loss and fire density was

greater in the Western and Central Regions—Sierra de Bahoruco, Northwestern

Region, Cordillera Central—than in the eastern half of the country—Los Hai-370

tises and the Eastern Region. Particularly, although the eastern half showed

extensive forest loss activity, few HH clusters of fire density were recorded in
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this region during the period under investigation. In fact, during the six-year

period 2013-2018, HH clusters of fire completely disappeared from the Eastern

Region (Figs. 11 and B6). Hence, fire activity showed a diverging trend in375

relation to that of deforestation in Los Haitises and the Eastern Region.

In addition, three remarkable features regarding the distribution of HH clus-

ters of fire density merit mention in this section. (Figs. 10, 11, B5 and B6). The

first is a large concentration of HH clusters in 2005 over southern Cordillera Cen-

tral, related to an uncontrolled wildfire that devastated almost 80 km2 of pine380

forest. As a result, more than 100 fire points per 100 km2 were reached, which

is a historical record. Second, for three years in a row—2013, 2014, 2015—both

MODIS and VIIRS sensors detected a high concentration of hotspots over Sierra

de Bahoruco, attributable to multiple wildfires that swept large areas of differ-

ent types of mountain forests during those years. Third, in 2014 and 2015, both385

sensors detected a relatively high number of fire points in Valle Nuevo, southern

Cordillera Central, which are depicted in Fig. B6 as HH clusters, and which are

also consistent with the fire history of the area.

Finally, the spatial error models yielded consistent results for forest loss as a

function of fire density (Table 3). The main finding was that, when modeling the390

variables over the entire grid—i.e., nationwide analysis—fire density significantly

associated with forest loss, which is consistent with the results of the long-

term approach. Particularly, both fire density coefficient and intercept were

significant in every annual model, regardless of the size of deforestation clearings,

whether large or small. Moreover, regional subsets showed that fire density was395

a suitable predictor of forest loss most of the time in Western and Central

regions, whereas in Los Haitises-Samaná Peninsula and the easternmost region,

fire density failed as a predictor of forest loss for many years.
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Table 3: Number of years in which the coefficients of the annual spatial error models

were not significant, considering the entire grid and different regional subsets.
Variables of the models

(transformed versions)
Regional subset (see Fig. 12)

Number of years† (listing in

parenthesis)

Forest-loss per unit-area in

large clearings vs. MODIS

fire density

Entire grid -

Western -

Central 1 year (16)

Los Haitises-Samaná 11 years (1, 2, 7, 9-14, 16, 17)

Eastern 9 years (1-4, 7, 10, 15-17)

Forest-loss per unit-area in

small clearings vs. MODIS

fire density

Entire grid -

Western -

Central 3 years (4, 12, 16)

Los Haitises-Samaná 7 years (1, 2, 4, 7, 12, 14, 17)

Eastern 15 years (1-12, 15-17)
†Number of years with non-significant coefficient at α = 0.01

Figure 12: Regions for annual model analyses. (A) Western, (B) Central, (C) Los

Haitises-Samaná, and (D) Eastern.

4. Discussion

I hypothesized that fire and forest loss were significantly associated during400

the first 18 years of the 21st Century in the DR, and that fire was a suitable pre-

dictor of forest loss, regardless of the size of the forest clearings. The evidence

found in the present study supports this hypothesis consistent with other studies
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that found a significant association between forest loss and slash-and-burn agri-

culture (Zweifler et al., 1994; Lloyd & León, 2019; Wendell Werge, 1974; Myers405

et al., 2004). Moreover, the association between fire and forest loss is particu-

larly consistent in the western half of the DR, which is likely due to the more

pronounced dry season in that region and to the presence of large mountain

systems, i.e., Cordillera Central, where shifting agriculture is widespread.

However, the evidence also suggests that, in the eastern half of the country,410

which includes Los Haitises and the easternmost region, fire was not a suitable

predictor of forest loss. Two conjectures may explain this finding: 1) Frequent

cloudy skies over the region, which may prevent optical sensors—i.e., MODIS

and VIIRS—from recording fire hotspots; 2) Factors other than fire that may

drive forest loss, such as commodity-driven agriculture, shifting agriculture by415

means of downing vegetation without burning—or by indeed performing burns

but with little impact on forest cover—and expansion of tourism infrastructure

facilities. The first conjecture is unlikely to explain the observed pattern, since

fire activity in cloudy conditions, considered on an annual average basis, would

have little effect as a driver of pervasive deforestation. The second conjecture420

provides a more likely explanation for deforestation peaks not associated with

fires, since it fits quite well with the tree cover decimation mechanisms that are

typically used in this part of the DR, i.e., forest clearing to expand shifting agri-

culture driven primarily by subsistence needs. Since there are many contextual

differences between Los Haitises and the easternmost tourism hub, I discuss the425

implications of holding this hypothesis true for each area separately.

In Los Haitises National Park, shifting agriculture was likely the most suit-

able driver of deforestation, since it is a well-documented concern in this pro-

tected area (Gesto de Jesús, 2016; Dirección Nacional de Parques, 1991). Shift-

ing agriculture is commonly driven by slash-and-burn systems, but in this case430

the “burn” component was likely to have little effect as a driver of deforesta-

tion in that area. All in all, the evidence suggests that shifting agriculture

was widespread within the protected area, particularly in the period 2014-2017.

However, the political and socioeconomic circumstances that led to a deforesta-
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tion peak in Los Haitises and surroundings remain unknown. Future research435

may provide insights into the specific causes that explain this peak in shifting

agriculture, and may also provide guidelines on how to prevent the recurrence

of deforestation peaks in the future, given that Los Haitises is an important

protected area of the country.

It is worth mentioning that, in this part of the DR, another probable source440

of deforestation without burning is the frequent renewal by cutting of palm

trees in a large plantation situated just south of Los Haitises—a typical case of

commodity-driven deforestation. Although this plantation is outside the bound-

aries of the national park, its impact on the biodiversity and ecology of the area

is unknown.445

Finally, in the easternmost region, much of the forest loss activity was prob-

ably driven by the expansion of tourism facilities, and by increased agricultural

and livestock activities, ultimately caused by a higher demand from tourism.

This is a concerning trend for the future of the DR forests, because although

the protected areas of the region are relatively well preserved, there is a lack of450

policies aimed at the conservation and proper management of the forests in the

vicinity of tourism facilities.

Regarding spatial patterns, I also hypothesized that both forest loss and fire

experienced a growing spatial autocorrelation over the study period. Although

a high degree of spatial autocorrelation was a common characteristic in both455

forest loss and fire density variables over the study period, no evidence was

found to support a hypothesis of a growing autocorrelation trend. Instead, a

cyclical variation of autocorrelation was the most common feature observed,

which I interpret as a consequence of both deforestation recovery and drought-

no drought cycles. However, further research is needed to determine the precise460

causes of those singular cycles.

The main limitations of this study were those imposed by the intrinsic char-

acteristics of the data available, which are ultimately related to the data acquisi-

tion mechanisms of the optical sensors MODIS and VIIRS. Although detecting

fires under cloud cover is virtually impossible with these sensors, I surmise that465
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the impact of false negatives on yearly analyses is quite limited. Another con-

straint met in this study was the use of fixed-size cells for the computations

of zonal statistics, which may have prevented the determination of multiscalar

patterns. Therefore, future research using regular and non-regular grids as zone

layers, or taking advantage of computer vision techniques, may provide insights470

about the significant multiscalar association patterns that may exist between

forest loss and fire.

In conclusion, it should be noted that since fire is a fairly common feature

associated with shifting agriculture, assessing the former is an indirect means

of understanding the latter, which ultimately may help prevent future impact475

on forest ecosystems. Therefore, proper fire assessment using remotely collected

data and advanced spatial statistical techniques may inform land management

policies and conservation strategies to help reduce forest loss, particularly in

protected areas, mountain areas, and the vicinity of tourism hubs. The ana-

lytical approaches used and the results obtained in this study hold potential to480

assist in this task.
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Appendices

Appendix A. Supplementary data for the long-term approach

Figure A1: DR forest cover in the year 2000. Areas with a canopy closure equal

to or greater than 25% in tree cover map of Hansen et al. (2013) were classified as

forest. The hexagonal grid overlaid was used for zonal statistics computations of the

long-term approach. See text for details.
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Table A1: Transformation parameters and normality test results for forest loss and

fire variables

Variable
Tukey’s Ladder of

Powers, λ

Shapiro-Wilk test,

W (p-value)

Moran’s I test,

I (p-value)

Average forest loss

per unit area per

year (2001-2018)

λ = 0.33 W = 0.99 (p = 0.81) I = 0.48 (p ≪ 0.01)

Average fire density

per km2 per year

(MODIS dataset)

(2001-2018)

λ = 0.33
W = 0.98
(p < 0.01) I = 0.55 (p ≪ 0.01)

Average forest loss

per unit area per

year (2012-2018)

λ = 0.23 W = 0.99 (p = 0.75) I = 0.48 (p ≪ 0.01)

Average fire density

per km2 per year

(VIIRS dataset)

(2012-2018)

λ = 0.3
W = 0.99
(p < 0.01) I = 0.55 (p ≪ 0.01)

Figure A2: Moran scatterplots of the transformed versions of the analyzed variables.

Average forest loss per unit area per year of the periods (A) 2001-2018 and (B) 2012-

2018. Average number of fire points per km2 per year in the periods 2001-2018 (C),

using MODIS dataset, and 2012-2018 (D), using VIIRS dataset.
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Table A2: Lagrange Multiplier tests for spatial dependence in linear regression models

of forest loss as a function of fire density for the periods 2001-2018 (MODIS fire data)

and 2012-2018 (VIIRS fire data)

FORESTLOSS0118∼

FIRESMODIS†

FORESTLOSS1218∼

FIRESVIIRS†

Lagrange

Multiplier test
Statistic p value Statistic p value

For error

dependence

(LMerr)

330.00 ≪0.01 340.74 ≪0.01

For a missing

spatially lagged

dependent

variable

(LMlag)

227.22 ≪0.01 226.41 ≪0.01

Robust variant

of LMerr
106.49 ≪0.01 118.89 ≪0.01

Robust variant

of LMlag
3.72 0.05 4.56 0.03

†FORESTLOSS0118 and FORESTLOSS1218 stand for the transformed versions of forest

loss per unit-area averaged per year of the periods 2001-2018 and 2012-2018, respectively.

FIRESMODIS and FIRESVIIRS stand for the transformed versions of number of fires per

km2 averaged per year, detected by the MODIS sensor (2001-2018) and by the VIIRS sensor

(2012-2018), respectively.
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Appendix B. Supplementary data for the annual approach

Figure B1: Example of the 2013 forest loss areas and their vicinity (red shaded areas)

used in the annual trend approach. These areas were generated by adding a buffer

zone of 2.5 km around each patch larger than 1 ha in area from the loss year dataset

(Hansen et al., 2013). The hexagonal grid, depicted as an overlay, was used for zonal

statistics computations. See text for details.
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Figure B2: Time series decomposition of yearly averages per 100 km2 of (A)Forest loss

area (in km2) of large clearings (>1 ha in size); (B)Number of small clearings (<1 ha

in size); (C) and (D) Number of fire points remotely sensed by MODIS and VIIRS

sensors in or around forest loss patches
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Figure B3: Yearly forest loss area (in km2 per 100 km2) from patches greater than 1 ha

in size for the period 2001-2018

Figure B4: Yearly number of forest loss patches smaller than 1 ha (in km2 per 100 km2)

for the period 2001-2018
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Figure B5: Yearly number of MODIS fire points per 100 km2 within patches of forest

loss and surroundings for the period 2001-2018

Figure B6: Yearly number of VIIRS fire points per 100 km2 within patches of forest

loss and surroundings for the period 2012-2018
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