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Abstract: Worldwide, over half of all preschool-aged children and two-thirds of non-pregnant
women of reproductive age suffer from hidden hunger. This situation may worsen due to the
expected increase in the world population and the effects of climate change. The objective of this
paper is to conduct a review of the relationship between soil, plants, and humans at the nutritional
level, factors that affect the availability of nutrients, and sustainable strategies to reduce hidden
hunger from an organic waste utilization point of view. Nutritional deficiency in people begins with
nutrient-deficient soil, followed by crops that do not meet humans’ nutritional needs. According
to previous studies, most agricultural soils are deficient in nutrients; however, organic residues
containing high concentrations of minerals are present in the non-edible parts that are discarded.
New opportunities (based on the circular economy strategy) are opening up to take advantage of the
nutrient pool of organic residues, such as the preparation of substrates (technosols) or amendments.
Their incorporation into the soil may consider various circumstances to ensure the mineralization and
bioavailability of nutrients for crops. Several agronomic practices and methods to monitor soil and
crop nutrient depletion can be considered among the best strategies to mitigate and reduce hidden
hunger through determining which foods and which parts should be ingested, and how to process
them to ensure mineral bioavailability.

Keywords: agri-food waste; food security; nutrient deficiency

1. Introduction

The growing world population is expected to reach 9.8 billion in 2050 [1]. This will
intensify the pressure on agriculture’s capacity to meet the resulting agri-food demand [2,3].
The global food requirement is set to rise by a further 80–100% in 2050 [4] and will be a major
challenge to ensure food and nutrition security. In 2022, around 2.4 billion people were
moderately or severely food insecure, and in 2030, almost 600 million will be chronically
undernourished [5].

A deficient nutrient intake is usually associated with an impossibility of acquiring
food and the consequences are often visible such as undernourishment with a very low
body weight. However, nutrient deficiencies also occur in the human body due to the
intake of foods with an unbalanced nutritional content. The lack of micronutrients can
occur without clinical manifestations, which is called hidden hunger [6,7]. For this reason,
it is difficult to establish the incidence of hidden hunger. However, a recent global study
estimated that 372 million preschool-aged children and 1.2 billion non-pregnant women
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of reproductive age suffer from micronutrient deficiencies [7]. Although the prevalence
was found to be higher in low- and middle-income countries, it also affects people in
high-income countries (45% of preschool-aged children and 48% of non-pregnant women
of reproductive age) [7]. Micronutrient deficiencies lead to health problems, depending on
the type of micronutrient, such as an increased susceptibility to infections, birth defects,
blindness, anemia, hypothyroidism, genetic disorders, compromised growth and cognitive
development, and may even result in death [7,8].

Soils are crucial for nutrient cycling and food security because they are where crops
grow and absorb a large part of the available nutrients. The soil must be healthy to ensure
its functionality in nutrient cycling and to facilitate crop growth, yield, and nutritional
content [9]. Currently, the soil situation in Europe is not promising, as soils are a non-
renewable resource in the short term and 60–70% of European soils are degraded [9,10]. In
addition, agricultural soils also suffer from nutritional deficiencies on a global scale [11].
This leads to a detriment in the provision of environmental services from soils, affecting
their capacity to produce food and the availability of nutrients for crops, among other
factors, leading to the occurrence of deficiencies in micronutrient intake in the world’s
population, due to the lower nutrient concentrations in foodstuffs [12].

Several strategies can be addressed in this respect, notably, sustainable management
in the agricultural and livestock sector and the use of its own waste as a nutritional source,
in line with the circular economy [13]. According to Kummu et al. [14], the non-utilization
of food waste implies the loss of around one-quarter of water resources, cropland, and
fertilizers consumed during cultivation. Scherhaufer et al. [15] found that 15–16% of the
total environmental impact of the food supply chain in Europe can be attributed to food
waste (edible and inedible parts) and Read et al. [16] found this figure to be 16–18% in the
United States. Furthermore, agricultural and livestock wastes contain enormous amounts
of nutrients, but their disposal means the loss of a potential nutritional source [17–19]. In
China, 0.29 kg phosphorus and 2.45 kg nitrogen per capita are lost through food waste [20].
In the United States, 880 mg of potassium per capita per day was lost due to food waste
(retail and consumer) in 2012 [21]. At a global scale, 273 kcal of energy (calories) is
embedded in the food waste generated per person per day, which represents ~15% of the
global median daily dietary recommended intake value. Moreover, the amount wasted of
the micronutrients zinc, copper, manganese, and selenium was as high as 25–50% of their
daily requirements [22].

In addition to it being an ancestral practice, the use of waste as a raw material for soil
construction (technosols) is also of recent interest [23–26]. The lack of fertile soil [10] can be
compensated for by the development of technosols [27–29]. Previous studies confirm that
technosols made from waste can accommodate crops and can provide the same or more
environmental services than natural soil [23,24,30–32].

Therefore, the incorporation of these organic residues into the soil can favor yield.
However, several factors influence whether the nutrients present in organic residues can be
absorbed by plants and finally assimilated and utilized by the human body. The objective
of this paper is to study the relationship between soil, plants, and humans at the nutritional
level, factors that affect the availability of nutrients, and strategies to reduce hidden hunger
from an organic waste utilization point of view.

2. Materials and Methods

The inclusion criteria established to determine whether an article could be admitted to
the literature review were as follows: (i) research/papers/studies related to waste-derived
nutrients as a sustainable source of nutrients and their relationship with hidden hunger;
(ii) articles published from 1980 up until today; (iii) methodical demonstration and synthesis
of findings; (iv) studies with a global geographical scope, which are given priority, although
in cases where there is not a large sample, studies with a national or regional scope are
included; (v) research mentioning comprehensive outcomes and/or information/data for
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an integrated approach to the topic under study; (vi) records identified using the keywords
chosen by the authors.

To obtain the literature used for the bibliographic review, the main objective was
to carry out documentary research, that is, to collect existing information on a topic or
problem. The Scopus database was consulted as well as the available tools. The search
options were title, abstract, and keywords. The following keywords were used (combined
or separately): *hidden hunger*, *food security*, *food system*, *nutrients*, *minerals*,
*micronutrients*, *human nutrition*, *crop nutrition*, *mineral nutrition*, *soil*, *nutrient
requirement*, *nutrient deficiency*, *nutrient toxicity*, *mineralization*, *bioavailability*,
*solubility*, *concentration*, *strategies*, *organic waste*, and *circular economy*.

3. Results and Discussion
3.1. Three Dimensions of Hidden Hunger: Soil, Crops, and Humans

Food insecurity affects not only those who are hungry, but also those who, even when
food is available, do not ingest the nutrients needed by the human body. Food insecurity
therefore also encompasses the cases of people who are malnourished due to a deficiency,
excess, or imbalance of macro- or micronutrient intake. Thus, the nutritional quality of the
food ingested is also a key issue. The presence of multiple micronutrient deficiencies is often
described as hidden hunger because it shows non-specific symptoms, which makes diagnosis
difficult [6,7]. Some symptoms of micronutrient deficiency are specific to a specific disease
or nutrient deficiency. However, others do not have specific clinical signs and are therefore
more complicated to diagnose [33]. Worldwide, over half of preschool-aged children and
two-thirds of non-pregnant women of reproductive age suffer from hidden hunger [7]. The
most deficient micronutrients in diets are iron, zinc, iodine, and selenium. In addition, calcium,
magnesium, and copper are also deficient nutrients [34].

Nutrient deficiency is a complex phenomenon, with interrelated causes, such as a lim-
ited capacity to acquire vegetables and fresh products, lack of information or education on
dietary practice, changes in consumption habits, and degradation of ecosystems, especially
soils [34,35]. Soils are the main reservoir of nutrients required by crops and people [36]. A
soil with an unbalanced concentration of nutrients will lead to a lack or excess of nutrients
in crops and subsequently in people [12]. Worldwide, 49% of soils are deficient in zinc,
31% in boron, 10% in manganese, and 3% in iron [36]. It should be noted that two of these
minerals are also considered deficient in the human diet, as mentioned above.

Food and nutrition security aims to “achieve all people, at all times, have physical, social
and economic access to sufficient, safe and nutritious food that meets their dietary needs and
food preferences for an active and healthy life” [5,37]. Food security therefore encompasses
several aspects, such as food availability and physical accessibility, people’s purchasing power,
and healthy and balanced food consumption, as well as ensuring that these attributes are
maintained over time for the stability of the system. However, studies have concluded
that an environmental and a citizen empowerment dimension in agricultural systems must
also be added [35]. The consequences of climate change (heat waves, drought, floods) and
environmental impacts on agricultural and natural environments are a destabilizing factor
for the food system [38–40]. Therefore, to ensure the long-term continuity of this system,
sustainability must be part of the equation too (Figure 1).

A sustainable food system is defined as a “system that delivers food security and
nutrition for all in such a way that the economic, social, and environmental bases to gen-
erate food security and nutrition for future generations are not compromised” [41]. The
environmental impacts associated with the food sector are considerable and diverse: defor-
estation and biodiversity loss, soil quality modification, resource consumption, nutrient
loss, ecosystem degradation, and waste production [42–47].

Human, crop, and soil nutrient depletion is expected to become worse due to the
increase in soil degradation and the consequences of climate change [11,48–50]. The conse-
quences of climate change will affect food production and the nutritional content of many
crops, leading to a reduction of 3 to 17% in protein, iron, and zinc concentrations [48,49].



Sustainability 2024, 16, 7185 4 of 23

This implies an expected growth of the world population suffering from hidden hunger,
based on the 2050 estimated projections for both the population and CO2 emissions. Zinc
and protein depletion will affect between 122 and 175 million people, whereas iron defi-
ciency will affect 1.4 billion women of childbearing age and children under 5 [50]. Further-
more, climate change simulations predict changes in the bioavailability of nutrients in soils.
Worldwide, calcium, magnesium, and potassium are the most bioavailable nutrients, and
their bioavailability is biome-dependent and can be modified by agriculture practices [51].
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Therefore, soil nutrition, crop nutrition, and human nutrition are interrelated, as
shown in Figure 2, to such an extent that the nutritional quality of plant-based foods
depends on the health and quality of soil [36].
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3.2. Mineral Nutrient Requirements for Humans

A healthy human diet requires the adequate intake of diverse nutrients. Most of them
come from the ingestion of plant-based foods (63% of proteins, 81% of iron, and 68% of
zinc) because they cannot be synthesized by the human body [50]. The human body needs
between 40 and 49 essential nutrients like minerals, vitamins, carbohydrates, amino acids,
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and fatty acids that are vital for metabolic and physiologic functions [52,53]. In addition to
water, humans require macronutrients (required daily intake > 100 mg) and micronutrients
(required daily intake < 100 mg) [54]. Minerals are needed in the human body for metabolic
processes and homeostasis, brain and muscle function, bone structure, and immune and
reproductive systems, among others [36,55]. Table 1 shows the mineral nutrients that
humans need to remain healthy.

Table 1. Minerals needed for good human health.

Nutrients References

Macronutrients N, P, Na, K, Ca, Mg, S, Cl Garg et al. [52]; Welch and Graham [53];
Gharibzahedi and Jafari [55];
Oliver and Gregory [56]Micronutrients Fe, Mn, Cu, Zn, I, Se, Mo, Co,

Ni, F, B, Cr, V, Si, As, Sn

The unbalanced consumption of any nutrient, either in excess or deficiency, can lead
to health problems like scurvy, rickets, anemia and impair the functionality of the main
systems of the human body: nervous, digestive, immune, epidermal, reproductive, and
skeletal [36,57]. Poor micronutrient intake can contribute to increased morbidity and mortal-
ity rates in infants and children, and can limit their ability to learn and grow. The population
groups most exposed to the negative effects of micronutrient malnutrition are women (be-
tween 15 and 49 years of age, pregnant and lactating women) and young children, due to
their high intake requirements [7,53,58]. In addition, the micronutrient requirements of
the human body change over the course of the human life cycle; growth phases, gender,
diseases, metabolic changes, and lifestyle can be factors that affect individual needs [57].

Scientists have defined the recommended dietary allowances (RDAs), the adequate
intake (AI), and tolerable upper intake level (UL) for minerals in the human body (Table 2).
As the mineral intake increases above the UL, so does the risk of disease. The bioavailability
of nutrients ingested with food can be highly variable and previous studies have highlighted
nutritional deficiencies in the general population [7]. So much so, 57% and 29.2% of U.S.
citizens do not meet the intake values for Mg and Zn, respectively, and are estimated to
meet the needs of only half of all healthy individuals (from the age of 1) [57].

The nutrient supply depends not only on the quantity and quality of food, but also
on the amount of nutrients that can be absorbed and are finally available for physiological
functions or storage (bioavailability). The metabolic processes that nutrients undergo
are digestion, solubilization, absorption, uptake and release, enzymatic transformation,
secretion, and excretion [59]. In general, the bioavailability of macronutrients is higher
than that of micronutrients [60]. Table 3 shows bioavailability data collected for various
mineral nutrients. It can be seen that for each element there is a large variability among
food sources. Furthermore, the bioavailability of nutrients can be affected by other factors,
such as food handling practices like selecting parts of the vegetable, cooking, storage,
transport, and processing, as well as the presence of substances that inhibit or enhance
absorption and competition for transport proteins or absorption sites [52,55,59,61,62]. In
addition, the bioavailability of mineral nutrients can be affected by the chemical form in
which the nutrient is present. For instance, the most commonly ingested form of Fe is one
of a low bioavailability [60], and its absorption depends on the presence of other elements
in the ingested food. The presence of Cu enhances Fe absorption, whereas the presence of
Ca may have the opposite effect [56].
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Table 2. The recommended dietary allowances (RDAs), the adequate intake (AI), and tolerable upper intake level (UL) of minerals (mg day−1) for adults.

P Na K Ca Mg Cl Fe Mn Cu Zn I Se F Mo Cr B

RDA a 1200 d 500 d 2000 d 1200 d 350 d 750 d 15 d

AI b 550 f,g 3500 f,g 950 g 300–350 f,g 8–18 d 2–5 d, 3 f 1.5–3 d 7.5 g, 8–11 e,
15 d 0.15 d–g 0.07 d,f 1.5–4 d,

2.9–3.4 f
0.075–0.25 d,
0.45 e, 0.065 f 0.05–0.2 d

UL c 2500 f 250 f 45 e 25 f, 40 e 1.1 e, 0.6 f 0.3 f 7 f 2 e, 0.6 f 10 f

a Recommended dietary allowances (RDAs) are the daily levels of intake of essential nutrients judged to be adequate to meet the known nutrient needs of all healthy persons. Values
presented are the highest RDAs either for male or female adults, excluding pregnant or lactating women [63]. b The adequate intake (AI) is a value based on experimentally derived
intake levels or approximations of observed mean nutrient intakes by a group (or groups) of healthy people [64]. c The tolerable upper intake level (UL) is the highest level of daily
nutrient intake that is likely to pose no risk of adverse health effects for almost all individuals in the specified life stage group [64]. d [63]; e [64]; f [65]; g [59].

Table 3. Availability of mineral nutrients according to food source (%).

K Ca Mg Fe Cu Zn I Se

Milk a 40 24–75 25–30 90
Vegetables and fruit 60–85 a 20–40 a, 5–41 b 23–35 a 12 a

Mixed food b 20–45 10–75 25–70 20–40 100 50–95

a [59]; b [66].



Sustainability 2024, 16, 7185 7 of 23

3.3. Mineral Nutrient Requirements for Plants

Plants need oxygen, carbon, and hydrogen and other elements to complete their life
cycle. An element is essential if a plant cannot complete its life cycle in the absence of that
element. Essential mineral nutrients for most plants are shown in Table 4. In addition,
nickel (Ni), silicon (Si), sodium (Na), cobalt (Co), and vanadium (V) are essential for some
plants [67]. However, other mineral elements are considered beneficial because they are
essential for some plant species under certain conditions. Sodium (Na), selenium (Se),
cobalt (Co), aluminum (Al), iodine (I), and silicon (Si) are considered beneficial to some
plants [56,68].

Table 4. Essential minerals for plants.

Nutrients References

Macronutrients N, K, Ca, P, Mg, S FAO [36]; Oliver and Gregory [56]; Kirkby [68];
Rengel [69]; Bell and Dell [70]; White and Brown [71]Micronutrients Fe, Cl, Mn, Zn, B, Cu, Mo

As in humans, high or low concentrations of minerals have consequences for the
development and functioning of plants and consequently on yield [68,71], which is more
significant for micronutrients. Mn is needed for plant metabolism, and its deficiency is
common, causing a biomass reduction [72]. The toxicity caused by an excessive amount
of Mn varies considerably, depending on the plant species. Fe is a key nutrient in the
redox system and its deficiency triggers the inhibition of chloroplast development and
of root elongation. The main consequence of high Fe concentrations in plant tissues is
a negative effect on crop yield [73]. Cu is required for the performance of major plant
systems, and its toxicity can come from the use of fungicides, industrial activities, and
the application of animal slurries [74,75]. The presence of small and poorly developed
leaves may be a symptom of a lack of Zn, since the root grows at the expense of the aerial
parts [76]. Generally, Ni excess is more of a concern than its deficiency. In agricultural
soils, the application of soil amendments like manure and compost can alleviate high Ni
concentrations in crops [77]. The shortage of B implies problems with the growth and
development of leaves, flowers, and fruits, as well as necrosis. Frequent manuring of the
soil with municipal compost may mask B toxicity in certain crop species [75].

Plant growth (dry matter production) is linked to nutrient supply. Initially, as nutrients
are supplied, plants rapidly increase their biomass if there is not a large variation in
nutrient concentrations until reaching the phase in which their growth is maximum and
is less affected by changes in nutrient supply [78]. If the nutrient supply continues to
increase, the plant experiences a decline in growth due to toxicity [79]. Alternatively, a
temporary interruption or reduction in the required amount of nutrients leads to nutritional
deficiencies. In general, nutrient deficiency symptoms in plants have to be severe to be
noticeable, such as reduced growth and yield [78,79].

Due to their relevance, the concentrations of minerals in plant tissues that are optimal
for maximum plant growth have been studied and regarded as “concentrations for adequate
plant growth or sufficiency” [78]. However, it is convenient to consider the margin of
reduction in concentration of the nutrient in which the plant is deficient; this is known as
“the critical deficiency range” [80]; this is the nutrient concentration that allows 90% or 95%
of the maximum shoot dry matter [78,81], or 90% of the maximum yield [71]. Once this
threshold is exceeded, the deficiency zone is reached where growth is drastically reduced.

In addition, the mineral concentration in a diagnostic tissue above which the yield is
decreased by more than 10% is known as “the critical toxicity concentration” [78,82]. When
nutrient concentrations in tissues are below the critical concentration deficiency, various plant
symptoms are observed depending on the nutrient and species tolerance [75]. Table 5 compiles
the nutrient concentrations suitable for plant growth as well as critical concentrations for
deficiency and toxicity. For more details on these concentrations, the main agricultural plants
and their growth phases can be found in López [83] and Riechelman et al. [84].
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Several aspects can contribute to the fluctuation of nutrient deficiency, sufficiency,
and toxicity ranges, such as nutrient interactions, plant genotype, developmental stage,
plant part, and environmental conditions [52,78,79]. When the concentration of a nutrient
reaches the range of toxicity, it can lead to a deficiency of other nutrients, due to synergism
and antagonism [84]. The fact that nutrients are in the soil does not mean that plants can
absorb them. In fact, the available nutrient content in soils is limited to a small fraction of
the total content. The bioavailability of minerals depends on several factors like the health
of the soil and environment, soil management practices, and the proper physical, chemical,
and biological conditions of soil for the cycling of nutrients and their transformation to
the chemical forms that roots require to absorb them. Plants have developed mechanisms
for the selection, transport, and accumulation of nutrients from all those available in the
aqueous soil solution. As well as processes of adaptation and tolerance to limiting or
excessive concentrations of mineral nutrients, the mineral chemical form is also crucial for
its transport through plant tissues [36,68,85].

As the plant advances in its life cycle, its nutrient needs are lower, except those for Ca
and B [78]. In addition, the nutrient concentration in cell tissues varies among plant types
and plant parts, resulting in an uneven distribution of nutrients. For example, in the case
of Fe in rice, a higher amount is observed in the leaves than in the polished grains [52]. If
we want to improve our Ca intake, it is advisable to select vegetables like broccoli, which is
one of its predominant sources. Wheat flour, pea, oat, and peanut seeds can be excellent
sources of Mg, Fe, Zn, Mn, Cu, Mo, and Se [55,61]. Nevertheless, a proportion of each
nutrient is immobilized in the inedible parts, as mentioned before.

3.4. Mineral Nutrients in Agricultural Soil

Nutrient inputs and outputs into agricultural soils can be natural or caused by human
activities. Ecosystems have a variety of nutrient inputs, such as atmospheric deposition,
soil organic matter mineralization or mineral soil content. Nutrient outflows are produced
naturally by leaching, erosion, volatilization, greenhouse gas emission, and plant uptake.
However, in crop lands, human activities can affect these processes when using organic or
mineral fertilizers [36].

To benefit the crop yield, the soil nutrients absorbable by plants must be present in
adequate quantities and in their soluble forms in the soil during the cultivation stage [36,71].
A global study conducted in 2000 by Tan et al. [11] estimated that 59%, 85%, and 90% of
harvested soils displayed a depletion of N, P, and K, respectively. However, no similar
studies have been found on a global scale for micronutrient deficiencies. In Table 6,
references are compiled showing the deficient nutritional status of agricultural soils at the
national or local level. In China, 55% of arable lands are magnesium-deficient and in India,
58.6%, 51.2%, and 44.7% of the agricultural soils are sulfur-, zinc-, and boron-deficient,
respectively [12,86]. Authors have reflected on the relationship between major soil groups
and their propensity for a deficiency of certain micronutrients [36,70].

For plant nutrient absorption to be effective, soils must have adequate physical, chem-
ical, and biological conditions, as well as favorable climatic conditions [87]. In addition, the
input of organic matter or fertilizers and agricultural management practices significantly
affect the nutrient pool in the soil [88–92].
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Table 5. Mineral nutrient concentration for adequate plant growth, critical deficiency, and critical toxicity concentration.

Units N K Ca P Mg S Fe Cl Mn Zn B Cu Ni Mo Reference

Mean
concentration
for adequate
plant growth a

mg
kg−1

dw
15,000 10,000 5000 2000 2000 1000 100 100 50 20

50–60 a,d 20 6
9–11 a,d

0.1
2 a,d 0.1

Kirkby [68];
Davis and

Beckett [93]
Range

concentration
for

sufficiency b

mg
g−1

dw
15–40 5–40 0.5–10 2–5 1.5–3.5 1–5 50–150 ×

100−3 0.1–6 10–20 ×
10−3

15–30 ×
10−3

5–100 ×
10−3

1–5 ×
10−3

0.1 ×
10−3

0.1–1 ×
10−3

White and
Brown [71]

mg
kg−1

dw
50–300 b 100–1000 b 25–250 b 15–100 b 15–150 b 3–15 b 0.1–5 b Guardiola and

García [94]

Critical
deficiency

mg
kg−1

dw

50–150 b;
200 a 10–20 b 15–20

5–10;
20–70;

80–100 d
1–5 0.01–10 0.015–0.05

Bell and
Dell [70];
Cakmak
et al. [75];

Alloway [82];
Häussling
et al. [95];

Reuter
et al. [96];

Brown [97]
µg
g−1

dw
15–0 b 0.1–1.0 b Cakmak

et al. [75]

mg
g−1

dw
2 Cakmak

et al. [75]

Critical
toxicity b

mg
g−1

dw
>50 >100 >10 >15 >0.5

4–7
>3.5;

20–30 d
0.2–5.3 100–300 ×

10−3 0.1–1 15–30 ×
10−3

20–30 ×
10−3 1

White and
Brown [71]

Cakmak
et al. [75]

mg
kg−1

dw
>500 b 200–300 a,c 100–1000 b,d

14–25;
17–21;

15–22 a,d

Cakmak
et al. [75];
Davis and

Beckett [93];
Edwards and

Asher [98];
Yamauchi [99]

µg
g−1

dw
100–300 b >10–>50 d

Ruano
et al. [100];

Asher [101];
Chaney [102]

a In shoot system. b In leaves. c Vegetative parts. d Depending on plant tolerance.
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Table 6. Nutritional deficiency in agricultural soils.

Nutrient Nutritional Deficiency References

N 12.5% in a vineyard after rainfall (Spain)
59% of harvested soils (worldwide)

Ramos and Martínez-Casasnovas [103]
Tan et al. [11]

K
10.2% in a vineyard after rainfall (Spain)
90% of harvested soils (worldwide)
88.11% in green sugarcane harvesting compared to burnt (Brazil)

Ramos and Martínez-Casasnovas [103]
Tan et al. [11]
Gabarra Mendonça et al. [104]

Ca 81.59% in green sugarcane harvesting compared to burnt (Brazil) Gabarra Mendonça et al. [104]

P
60.5% in a vineyard after rainfall (Spain)
85% of harvested soils (worldwide)
78.87% in green sugarcane harvesting compared to burnt (Brazil)

Ramos and Martínez-Casasnovas [103]
Tan et al. [11]
Gabarra Mendonça et al. [104]

Mg 81.40% in green sugarcane harvesting compared to burnt (Brazil)
55% in arable lands (China)

Gabarra Mendonça et al. [104]
Ishfaq et al. [86]

S 60–100% in watersheds (India)
58.6% in agricultural soils (India)

Rego et al. [105]
Shukla et al. [12]

Fe 19.2% in agricultural soils (India) Shukla et al. [12]
Mn 17.4% in agricultural soils (India) Shukla et al. [12]

Zn 81–100% in watersheds (India)
51.2% in agricultural soils (India)

Rego et al. [105]
Shukla et al. [12]

B 0–100% in watershed (India)
44.7% in agricultural soils (India)

Rego et al. [105]
Shukla et al. [12]

Cu 11.4% in agricultural soils (India) Shukla et al. [12]

Organic matter decomposition and mineralization are mechanisms that nature
employs for the cycling and supply of nutrients. Mineralization processes performed by
soil microorganisms transform organic compounds into water-soluble inorganic forms
of nutrients, needed by most plants. The key factor for the mineralization of organic
matter present in organic wastes is the C/N ratio, which depends on the composition
of each type of waste. The potential C/N ratio that favors mineralization is between
20 and 30 [106,107], which represents an equilibrium between N mineralization and
microbial immobilization. Lower ratios favor the rapid release of nutrients, whereas
higher ratios slow it down. Organic waste has a diverse C/N ratio. Non-manure
animal wastes, animal manures, compost, sewage sludge, and municipal solid wastes
usually have low C/N ratios, between 1 and 17, but these could be up to 29. On the
contrary, organic residues from pruning and harvesting show high C/N values (from
44 to 139) [107–111].

Agricultural production may trigger a depletion in the concentrations of soil nutri-
ents, which has to be counterbalanced by their supply. In sub-Saharan Africa, erosion
and crop harvest (edible and residue) were the cause of about 70% of all N losses,
nearly 90% of all K losses, and 100% of the P losses [112]. Organic residues remaining
in or added to the soil can replenish nutrients but can involve some challenges. One
challenge is logistical, due to the high number of residues needed to meet crops’ de-
mand for nutrients, which has been estimated for N to be from 70.59 to 515.65 tons
per hectare f.w. of pruning and harvesting residues [111]. Organic waste has large
amounts of nutrients, which make it an excellent source of nutrients [113]. Another
challenge is the synchronization of the period of release of each nutrient with the stage
of crop development in which it is required [114]. In addition, the presence in organic
wastes of nutrients that are heavy metals can lead to problems for ecosystems, plant
development, and human health [36,115]. However, its use has great advantages, such
as improving soil properties, fertility, microbial biomass, and carbon storage, as well
as enhancing ecosystem functioning and circular economy strategies [115–120].

The application of inorganic fertilizers quickly provides a supply of nutrients with
a high mineralization rate. However, their manufacture requires the extraction and
consumption of non-renewable resources, affects microbial activity, and can lead to
environmental pollution (e.g., by leaching), soil degradation, and soil organic carbon
and nitrogen reduction [121–124].
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When organic residues have high C/N values, their mineralization requires an
additional nitrogen input. In agricultural systems, this comes from the mineralized
nitrogen found in the soil or from fertilizers. In either case, the bacteria will prefer the
inorganic nitrogen already available in the soil, which they will immobilize to meet
their metabolic needs; thus, they compete with plants for this nutrient. This decrease in
the nitrogen content available in the soil can lead to nutritional deficiencies for crops.
As a consequence, the bacterial mineralization of organic matter is relegated until new
sources of nitrogen are found, for example, with fertilizers [91,107,111]. Therefore, to
achieve adequate fertilization, a combination of organic and inorganic fertilization
systems is appropriate if their adverse effects are kept to a minimum [36,111,118,125].

3.5. Mineral Nutrients and Circular Economy

While nature shows a constant cycle of activity, humans show a preference for
linear activities. This is because of the time scale on which each of them functions;
it is long-term for nature, whereas it is generally short-term for humans. To achieve
sustainability, it is essential to achieve a balance between them. Therefore, it is desirable
to gear human interests towards circularity. In the agricultural sector, the application
of circularity or a circular economy is understood as “the set of activities designed
to not only ensure economic, environmental and social sustainability in agriculture
through practices that pursue efficient and effective use of resources in all phases of the
value chain, but also guarantee the regeneration of and biodiversity in agroecosystems
and the surrounding ecosystems” [126]. The environmental impacts associated with
agricultural production are diverse and considerable, as stated before. Each stage of
agricultural production involves resource consumption (e.g., nutrients, water, energy,
seeds, soil occupation, and pesticides), outputs (e.g., nutritious food, waste, emissions,
and contaminated waste), and associated impacts (e.g., reduction in the soil nutrient
content, soil degradation, and greenhouse gas emissions). It is undoubtedly a field of
growing interest among the scientific community [42,47,119].

This work focuses on the need to apply the circular economy to nutrient manage-
ment to obtain foods with adequate nutrient concentrations. To achieve this circularity,
we must (a) enhance the efficient use of resources, mainly non-renewable resources,
such as nutrients, safeguarding their adequate dosage and replenishment; (b) ensure
that nutrient flows are kept in a loop to avoid leaches and immobilization (e.g., reincor-
porating into soil organic matter produced as food losses and waste, pruning residues,
and animal manures); (c) guarantee agricultural sustainability in its three dimensions:
environmental, economic, and social [45,111,127,128]. The global cycles of the main
macronutrients (nitrogenous, phosphorous, and potassium) have been extensively
described; however, not so much for micronutrients [36,70,89,129]. This is because
agriculture has focused on providing the macronutrients most needed to increase yield,
but not on ensuring the presence of micronutrients in food [52]. Nutrient inputs into
agricultural systems are produced by the incorporation of organic matter or inorganic
fertilizers, the latter being the most common way. In 2022, the projected demand for
nitrogen, phosphorus, and potassium as fertilizers was 200,919 thousand tons [130].
For ages, farmers have been using organic waste generated from their activities as
organic matter for the soil. Nowadays, only 2% of usable resources are reused in farms,
and 98% becomes waste and pollutants [131,132].

Losses (from harvest/slaughter/catch) and waste (a the retail and consumption
levels) of edible food are produced throughout the food chain [133]. According to the
FAO [134], the amount of lost or wasted edible food produced for human consumption
worldwide is about 1.3 billion tons per year, accounting for one-third of the total
production. More recently, the FAO [133] measured 14% of the food produced globally
as being lost from the post-harvest stage onward. This phenomenon occurs in both
developed (more than 40% of the food losses occur at the retail and consumer levels,
being 222 million ton) and developing countries (more than 40% of the food losses occur
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at the post-harvest and processing levels). These food losses result in an aggravation of
the environmental impacts generated during the production and distribution process,
as well as a hindrance to the sustainability of the system and food and nutrition security.
The flow of global nutrient losses in food production was estimated by Berners-Lee,
et al. [129]. Their findings indicate that 11 mg per person per day of iron is lost and 8 mg
per person per day of zinc is lost due to harvest losses, post-harvest losses, investment,
and non-food uses.

In addition, livestock and agricultural farms produce other types of non-edible
organic waste, through activities such as pruning, cleaning or removal of weeds,
straw, litterfall, and animal manure. Although that type of waste from farms is of
increasing interest for nutrient recovery [135–137], it is generally destined for landfill
or burning. These practices have consequences for the environment since greenhouse
gases are emitted into the atmosphere, carbon sequestration is reduced, the risk of
fire increases, and there is a loss and flow change of the elements and nutrients that
compose them [69,106,107,138].

In sustainable and organic farming, organic residues are applied to soil as a
nutritional source for crops and humans to improve the soil’s physical properties,
to increase carbon storage, and to improve the microbial activity, biodiversity, and
circular economy, among other factors [10,116,117,138–145]. Moreover, this practice
maintains nutrient circles. Circularity in the agricultural and food sector is achieved
when all organic waste produced at any stage (cultivation, harvest/slaughter/catch,
processing, distribution, and consumption) is recovered and incorporated as raw
material (Figure 3). These organic residues can be incorporated into the soil or used to
build technosols, facilitating the indefinite use of nutrients by plants.
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3.6. Waste-Derived Nutrients as Mineral Nutrient Source

Organic waste has large amounts of nutrients, which makes it an excellent source
of nutrients [113]. According to Fortunati et al. [146], the UE generated about 700 mil-
lion tons of agri-food waste. In the study conducted by Caldeira et al. [147] in the same
region, the distribution of waste, including the primary production, processing and
manufacturing, distribution and retail, and consumption of edible and inedible food,
corresponded to 51% fish, 46% vegetables, 41% fruit, 36% oil crops, 29% eggs, 23%
meat, 22% potatoes, 20% cereals, 5% dairy, and 4% sugar beets. Furthermore, they high-
lighted the large number of residues of inedible parts generated in the consumption
phase, at 40 to 49% of the waste flow for fruit and vegetables. As for meat, 80% of the
waste produced in the processing and manufacturing phases is composed of inedible
parts, but it is not considered waste since it is used in other industries. However,
during other phases of agricultural activity, non-edible residues, from pruning and leaf
fall, are also generated.
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The amount of crop residues generated during the primary production phase
varies depending on the type of species. Thus, the amount of residues generated after
harvesting roots and aerial debris (stubble) is between 1.11 and 2.44 tons per hectare
for root crops, 2.88 and 3.89 tons per hectare for legumes, 3.38 and 5.60 tons per hectare
for cereals, 4.67 and 4.03 tons per hectare for forage crops, and 7.01 and 14.32 tons per
hectare for oilseed crops. Sugar beet (1.11 tons per hectare) and winter rape (14.32 tons
per hectare) are the crops that generate, respectively, the lowest and the largest amounts
of residues per hectare among 17 crops studied by Torma et al. [148] in Slovakia.

It should be emphasized that nutrients are not only lost through food waste but
also by discarding inedible foods. The fraction of nutrients absorbed from the soil
and stored in the non-food parts of the crop has been studied little since it has been
considered as waste instead of yield profit and a source of raw material like mineral
nutrients. De Mello Prado [149] reported the amounts of N, K, Ca, P, Mg, S, Fe, Mn, Zn,
B, Cu, and Mo found in the edible (grain) and inedible (residue) parts of wheat and
soybeans. The most abundant nutrients in the inedible components of wheat were K
(87%), Ca (81%), Fe (72%), Mn (70%), B (67%), and S (64%), whereas in the soybean
residues, they were Ca (84%), Mg (77%), Fe (75%), B (69%), and Mn (67%).

Wastewater is also a source of nutrients, the type and amount of which can vary
with the wastewater origin, being industrial, human, or animal [150]. Each year, one
person contributes 3 kg N to domestic wastewater [113]. Thus, based on population
growth estimates [1], in 2050, we could have an overall contribution of 29.4 million tons
of N. Pig and cattle manure wastewaters contain three times more N than domestic
wastewater [113]. In the EU, the total sewage sludge produced from urban wastewater
(in terms of dry substances) was 2372.62 thousand tons in 2021 [151]. During the year
2000, throughout the EU, 661.58 thousand tons (dry matter) of sewage sludge was used
in agriculture. Spain is one of the countries that uses the most sewage sludge to recover
the nutritional value of crops (80%) [152].

The fishing industry also generates high amounts of organic waste; this amounted
to 50 to 125 million tons worldwide in 2018 [153]. Of the total fish caught, 70% requires
processing and 20 to 80% becomes waste depending on the type of species and the final
product [154]. Fish waste is either used for feeding aquaculture organisms, fishmeal
and oil production, or is eliminated [154]. Aquaculture also generates fish sludge
composed of water, fish feed, fecal matter, and biomass from dead fish and/or other
species. This sludge has a high nutritional content depending on the species being
bred [153,155]. The worldwide aquaculture production was 87.5 million tons in 2020.
The weight of fish sludge generated per ton of fish produced was estimated at 1.4
tons by Celis et al. [156]. This translates to a release of nutrients into the environment
estimated at 9000 tons of P and 27,000 tons of N per year in Norway [157]. Further,
dried fish sludge can be used as a fertilizer, being able to replace 50 to 80% of the N in
mineral fertilizers [158].

Table 7 provides the nutrient concentrations obtained in several types of waste from
previous studies.
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Table 7. Mineral nutrient concentrations in organic waste.

Waste Units N K Na Ca P Mg S Fe Mn Zn B Cu Ni Mo Reference

Animal
manure

mg
kg−1 65.4–214.2 16.6–59.2 1.5–4.9 Ramos

et al. [159]

Animal
manure

g
kg−1

dw
12.3–37.7 5.6–35.4 0.9–10.4 Adiaha

[160]

Aquaculture
manure
waste

mg
kg−1

dw
131–614 547–25,206 87–3349 Shi

et al. [155]

Crop
residue

mg
kg−1 18.08–41.50 3.47–13.41 2.29–6.58 2.62–11.41 0.48–0.93 0.43–2.73 0.06–0.20 0.11–0.27 0.03–0.05 Yusuf

et al. [161]
Fish
sludge
(liquid
part)

mg
kg−1 33.1–53.8 16.6–36.7 26.6–173.4 17.1–43.9 7.4–39.4 7.4–243.3 0.03–0.1 0.09–0.3 0.1–0.02 0.03–0.06 0.01 Goddek

et al. [162]

Fish
sludge
(solid
part)

mg
kg−1 177.1–362.6 8.3–27 239.1–274 133.2–149.8 20.3–22 9.9–18.7 1.4–2.3 4.9–7.1 0.5–0.9 0.4–0.7 Goddek

et al. [162]

Fish waste
mg
kg−1

dw
2.78

Illera-
Vives
et al. [163]

Marine
waste
compost

mg
kg−1

dw
907 87.30 31.4 5.62 3.60

Illera-
Vives
et al. [163]

Pruning
residue

mg
kg−1

dw
4400–9300 1648–6889 160–1079 6861–14,059 924–2259 44–371 5.7–32.2 4.6–19.4 3.8–8.2

Rodríguez-
Espinosa
et al.
[111,114]

Seaweed
mg
kg−1

dw
3.73

Illera-
Vives
et al. [163]

Sewage
sludge
compost

mg
kg−1

dw
22,600 4585 1529 64,245 5815 18,989 94.4 249.5 79.7 6.2

Rodríguez-
Espinosa
et al.
[111,114,115]
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Many studies conclude that waste is a suitable source of nutrients for yield and soil
quality improvement [117,141,143,145]. As stated before, organic wastes have many min-
eral nutrients [164]. These are present in quantities and a variety that depend on the origin
of the waste, whether it has been subjected to some type of stabilizing treatment; agricul-
tural and livestock practices like fertilization, pesticide treatments, and the application of
medicines; or soil and environmental pollution, among other activities. This has given
rise to new proposals for the use of waste, such as the recovery of bioactive substances for
the pharmaceutical and cosmetics industry, energy generation, animal feeding, and the
production of materials for water purification, construction, or technosols [25,135–137,165].
Organic waste incorporated into the soil as an amendment or a growth substrate also is a
rich source of nutrients. However, it is not known exactly which, how much, when, and
how (in the bioavailable or non-bioavailable form) they will be released to be absorbed by
plants [166]. This makes its use difficult, as the farmer needs to synchronize the nutritional
needs curve of the crop with the nutrient release curve [108].

Previous studies have shown that the release of nutrients from organic residues also
depends on other factors such as the previous state of the soil where it is applied, the climatic
conditions, and the system for incorporating the residue, among others [108,117,166]. In any
case, nutrients become available as microorganisms decompose organic matter. In addition, a
rapid release of highly soluble nutrients can occur in phases prior to decomposition [114,167].
Therefore, when a rapid supply of nutrients is required, the presence of a rapidly soluble
fraction in the waste is desirable. In the case of pruning residues, date palm leaf prunings
show high concentrations of soluble nutrients with high solubility indices (73% Na, 56% K,
63% Ca, 74% Mg, 2% Fe, 66% Mn, 21% Cu, and 67% Zn) in the residues studied by Rodríguez-
Espinosa et al. [114,115]. However, in the case of sewage sludge compost, despite its high
nutrient concentration in the elemental composition, the soluble fraction is very low, with
low nutrient solubility indices (53% Na, 32% K, 1% Ca, 3% Mg, 0% Fem 0% Mn, 1% Cu, and
2% Zn). Therefore, its application seems more suitable for long-term nutrient supply. The
nutrient solubility is also important when we want to avoid the consequences of trace element
presence in waste [115].

The bioavailability of nutrients is a crucial aspect for crops and plants and is highly
variable. The availability of nutrients from manure depends mainly on the type of animal
species from which it originates, the livestock breeding system (intensive or extensive),
and the season when is applied [159,168,169]. In animal manure, the water-soluble and
exchangeable fraction is 2–9.5%, 0.7–6.9%, and 1.4–22.1% for Zn, Cu, and Mo, respec-
tively [159]. Based on the results obtained by Ramos et al. [159], cattle manure coming from
an extensive production system showed a lower water-soluble and exchangeable fraction
than that from intensive production, generally for the nutrients studied. In wastewater,
the bioavailability of phosphorous can vary between 3.4 and 81% [170]. The available P
fraction in wastewater sewage sludge was 13%, in fish sludge was 7–26%, and in dried fish
sludge was only 4% [171].

However, as stated before, organic waste can entail hidden risks, related to heavy
metals, microorganisms, and emerging contaminant contents [36,115]. Therefore, its safety
must be ensured prior to application.

3.7. Strategies to Improve Mineral Nutrition (Soil, Plant, and Human) and Reduce Hidden Hunger

Reducing the incidence of hidden hunger is of interest to ensure nutrition security [5,41].
As has been detailed throughout the paper, it is a complex process, and several lines of action
are proposed.

In general, a diet poor in micronutrients is the main cause of malnutrition [172].
Therefore, it is important to educate people on eating habits that enhance nutrient-rich and
diverse diets. It is important to focus on learning which foods and which parts of them have
the required micronutrients in the proper amounts and forms that are more bioavailable
for the human body and on communicating how to manage and process them to avoid
nutrient loss [55,60]. Samtiya et al. [173] highlighted food fermentation as a processing and
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preservation technique that can increase the bioavailability of nutrients by up to 30% for
Ca, P, Fe, Mn, and Zn in wheat. Other actions are to supply nutrients while cooking or
processing the food, as well as the use of supplements [172]. In addition, it should be taken
into consideration that the presence of anti-nutrients in ingested foods can affect the ability
of the digestive system to absorb and use nutrients [53,61,174].

Human nutrition depends first on fertile soils and crops that absorb nutrients effi-
ciently. In terms of enhancing the efficient use of nutrients, an excellent strategy is to
implement sustainable soil management practices that prioritize fertility. The FAO [36]
considered that integrated soil fertility management can improve crop yields, while pre-
serving sustainable and long-term soil fertility through the combined judicious use of
fertilizers, recycled organic resources, responsive crop varieties, and adequate agronomic
practices. As mentioned above, an optimal adjustment of the plant’s nutritional needs
with the supply of fertilizers and organic matter can also avoid problems of the excess and
loss of nutrients. This requires further research mainly due to the wide variety of crop
species, cropping systems, climatic conditions, and the types of organic residues and their
treatments and application methodologies. Regarding the application of organic residues
as a nutritional source, there is increasing interest in the development of technosols using
available organic residues [25,165]. Technosols made by residues can provide long-term
nutrients in large quantities, as well as rapidly soluble nutrients [111,114,115]. Also, de-
signing and constructing a substrate to facilitate the absorption of nutrients in waste and
reduce fertilizer application is a promising method to enhance the circular economy.

In addition, ensuring the sustainability, protection, and restoration of soils and ecosys-
tems is an investment in our nutritional health. This can be achieved by reducing food waste
and adopting nature-based solutions [14,36] and also using microorganisms, plants, and other
species to reduce pollutant concentrations and immobilize or enhance nutrient cycles and
bioavailability. Some strategies combine aquatic with terrestrial farm production, phytoreme-
diation, mycoremediation, bacterioremediation, and biofertilizers [36,52,175–178]. Further, the
combination of crops can improve environmental conditions as well as nutrient availability.
Zuo and Zhang [179] concluded that intercropping systems could prevent or mitigate Fe
deficiency in Fe-inefficient plants.

All of these agronomic strategies and the genetic modification of species contribute to
the biofortification of crops [52], which is defined as the enrichment of food or feed crops with
at least one mineral or vitamin during cultivation [172]. Furthermore, for the biofortification
strategy to have a positive impact on human nutrition, the added nutrients must accumulate
and be bioavailable [55,61,180]. Because there are globally consumed foods that are the main
supply of nutrients for many diets, it would be appropriate to focus biofortification efforts
on the crop sources of those foods. For instance, in 2021, cereals and their products were the
main global iron, zinc, magnesium, and phosphorus nutritional supply [181].

Another key aspect is to know the nutritional status of the soil and plants at all times in
order to provide the right amount of fertilizer or organic matter [78,149]. Thus, nutritional
monitoring techniques and efficient nutrient addition to the soil can be of great interest [36].
Also important is to increase knowledge about local and global soil nutrient depletion and
about nutrients and their mobility in organic wastes. Finally, local production must be
supported, as nutritional needs must also be addressed locally.

4. Conclusions

Previously, food security was looked at through a prism of the ability to access food,
but nowadays, the nutritional aspect of the food eaten is also considered important. There-
fore, not only must it be ensured that all people have access to food, but also that the food
they eat contains the nutrients necessary to remain healthy.

At present, there is still a lot of food loss, with the consequent loss of the nutrients they
contain. These nutrients can be reintroduced into biological cycles by using the residues
to improve soil quality and nutrient availability, and moreover, to build soils (technosols).
Technosols are viable for growing crops and can be designed according to the nutritional
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needs of soils, crops, and humans. Further, soils must have an adequate mineral content for
plant and human nutrition, but most agricultural soils worldwide show mineral deficits.
Technosol construction could be a new option for the problem of hidden hunger due to
micronutrient deficiency, parallel to improving crop soils with the proper use of waste. But
this is a complex task due to the interconnection between soil, crop, and human nutrition.

To decrease hidden hunger, several strategies are required at the agronomic level, in
the field of knowledge increase and dissemination, to better understand the functioning of
the soil–plant system, and in the area of social education.
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