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Abstract: This work studies the efficiency and long-term viability of powered hydrogen production.
For this purpose, a detailed exploration of hydrogen production techniques has been undertaken,
involving data collection, information authentication, data organization, and analysis. The efficiency
trends, environmental impact, and hydrogen production costs in a landscape marked by limited data
availability were investigated. The main contribution of this work is to reduce the existing data gap
in the field of hydrogen production by compiling and summarizing dispersed data. The findings are
expected to facilitate the decision-making process by considering regional variations, energy source
availability, and the potential for technological advancements that may further enhance the economic
viability of electrolysis. The results show that hydrogen production methods can be identified that do
not cause significant harm to the environment. Photolysis stands out as the least serious offender,
producing 0 kg of CO2 per kg of H2, while thermolysis emerges as the major contributor to emissions,
with 20 kg of CO2 per kg of H2 produced.

Keywords: renewable energy; alkaline electrolysis; PEMFC; energy efficiency; sustainability; green
hydrogen

1. Introduction

The global transition toward sustainable energy solutions has ignited a profound
exploration of renewable technologies among researchers, aiming to minimize its envi-
ronmental impact. Fossil fuels, the backbone of the energy infrastructure for decades,
have exacted a heavy toll on the environment, prompting a reevaluation of power gener-
ation [1,2]. This pivotal change, transitioning from fossil fuel predominance in 2015 to a
forecasted 98% dependence on renewables by 2040 and aiming for zero greenhouse gas
(GHG) emissions by 2050, highlights the imperative nature of the transition [3].

Climate change, air pollution, and resource consumption amplify the imperative to
reassess power generation methods [4,5]. In the quest for sustainable solutions, myriad
renewable energy sources emerged. Nevertheless, many of these sustainable solutions
suffer from irregularity, resulting in mismatches between the available electrical energy and
consumption by end users. To mitigate this fluctuation, the development of efficient energy
storage systems becomes essential as a priority to develop suitable energy conversion
or storage systems for the power grid [6]. Simultaneously, the unsustainability of non-
renewable energy technologies dependent on fossil fuels such as gasoline, diesel, and coal
necessitates a critical assessment [7].
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Hydrogen promises to evolve into a principal conduit for chemical energy in the
trajectory toward a more sustainable energy ecosystem, with the expectation that hydrogen
and its derivatives constitute 12% of total energy consumption by 2050 [8]. This transfor-
mation holds profound implications for global energy systems, particularly for reshaping
the balance between conventional energy sources and innovative solutions [9]. The aim
of this review is to illustrate the role of hydrogen and its complex interaction with re-
newable energy frameworks, fostering a trajectory toward cleaner and more sustainable
energy practices.

Hydrogen, a fundamental element, has emerged as a beacon of promise amidst
the challenges posed by traditional energy sources [10–14]. Unlike its counterparts de-
rived solely from non-renewable sources, hydrogen stands out for its capability to be
produced using renewable energy sources, such as solar and wind energy, geothermal
power, and others.

Hydrogen is characterized as a versatile and environmentally friendly energy carrier,
especially when it is produced through water electrolysis powered by renewables [1,15–17].
The synergy between hydrogen and green production methods represents a pivotal step
toward a sustainable future, offering a pathway that aligns seamlessly with environmental
preservation and innovation principles. This eco-friendly variant of hydrogen, aptly termed
“green hydrogen”, has catalyzed the reshaping of the energy landscape [15,18–20]. Addi-
tionally, this growth underscores the crucial role of low-carbon hydrogen, with predictions
suggesting that, by 2050, roughly two-thirds of total hydrogen production will be derived
from renewable electricity, with the remaining third generated through natural gas in
conjunction with carbon capture and storage [21].

It is evident that the pursuit of sustainable energy sources continues and, consequently,
the demand for comprehensive information has increased, which means that when it comes
to assessing the efficiency trends, environmental impact, and costs of hydrogen production,
readers may find that such data are unavailable in the literature from one source. This
review provides the efficiency trends of various production methods over the years. While
individual efficiency figures have been extracted and analyzed [22–27], the absence of a
unified table makes it challenging to perform a side-by-side evaluation of the different
methods. When examining available reviews on greenhouse gas emissions and the costs
associated with hydrogen production methods, it is apparent that many sources concentrate
on a single production method and its related emissions and costs [23–31]. Recognizing
this knowledge gap, this review takes on the task of unearthing and presenting this elusive
data, seeking to provide a robust foundation for informed decision-making, innovation,
and holistic energy transformation.

In this context, the following sections explore the details of renewable and non-
renewable energy technologies, the attributes of hydrogen production processes, and
the potential integration of hydrogen and fuel cell technologies into the energy sector.
This study endeavors to contribute meaningfully to the discourse surrounding sustain-
able energy, thereby facilitating a more conscientious and responsible energy trajectory.
Section 2 provides an overview of energy production methods, hydrogen technologies, and
environmental sustainability. Section 3 outlines the methodology employed in the review,
detailing the systematic steps that are followed. Section 4 discusses the role of hydrogen
as a sustainable solution for electricity production, mainly focusing on its potential en-
ergy and transportation medium. In Section 5, we present the principal characteristics of
the hydrogen production processes, emphasizing the significance of electrolysis as a key
player in shaping the trajectory of hydrogen applications. Section 6 explores efficiency
trends in hydrogen electrolysis and fuel cell advances and challenges. Recent advance-
ments in hydrogen production and storage technologies are reported in Section 7. Finally,
Sections 8 and 9 summarize the essential findings and implications of the study.
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2. Energy Production, Hydrogen Technologies, and Environmental Sustainability

The expansive landscape of energy production methods, hydrogen production tech-
niques, and the resultant global greenhouse gas (GHG) emissions necessitates a theoretical
overview. In this section, the focus is directed to developing comprehension of the fun-
damental principles supporting these essential components. The investigation offers a
comprehensive basis for this task, highlighting the core concepts that contribute to our
understanding of critical elements in the broader context of energy and environmental sus-
tainability.

The first of these topics involves energy production methods, focusing on the global
energy landscape division between non-renewable and renewable sources, emphasizing the
need for innovative solutions such as hydrogen-based energy carriers. After exploring how
energy production can provide sustainable and innovative solutions based on hydrogen, the
second part of the section talks about hydrogen production methods, examining the role that
each method plays in the global energy landscape and shaping the pursuit of hydrogen as
a sustainable energy carrier. Thermochemical processes utilize diverse resources, whereas
water electrolysis, specifically proton exchange membrane fuel cells (PEMFC) and solid
oxide electrolysis (SOE), arise as promising avenues for clean and sustainable energy
production. This exploration highlights the need for a strategic approach in selecting the
optimal hydrogen production technique. Finally, this section employs statistical data to
emphasize how hydrogen plays a pivotal role in mitigating GHG emissions and fostering
sustainable energy practices.

2.1. Energy Production Methods

The technology of renewable energy causes minimal harm to the environment. These
encompass, among others, solar photovoltaic and thermal, wind, geothermal, tidal, low-
head hydropower (small-scale), biomass and biogas, and hydrogen fuel cells (hydrogen
generated from renewable resources) [32].

Non-renewable energy technologies encompass those that rely on fossil fuels such
as gasoline, diesel, oil, propane, methane, natural gas, or coal for energy generation. Dis-
tributed generators (DGs), operating on fossil fuels, are not regarded as sustainable sources
of energy generation, given the non-renewable nature of their energy sources [33]. These in-
clude the internal combustion engine (ICE), combustion turbine, gas turbine, microturbine,
and fuel cells (using some form of fossil fuel, such as natural gas, to generate hydrogen).

In the current global energy landscape, energy production is notably stratified, with a
considerable portion still reliant on non-renewable sources such as fossil fuels. However, a
growing emphasis on sustainability has led to a parallel surge in adopting renewable energy
technologies. This dichotomy underscores the multifaceted challenge of harmonizing
energy demand with environmental stewardship, driving a critical reassessment of energy
systems and necessitating innovative solutions such as hydrogen-based energy carriers.

In terms of hydrogen energy carriers, hydrogen fuel cells are anticipated to assume
a pivotal role as an energy carrier in prospective global energy systems. With fossil fuel
resources vanishing and environmental apprehensions mounting, hydrogen is positioned
to ascend as an increasingly significant chemical energy carrier, potentially evolving into
the primary chemical energy carrier of the future [34].

2.2. Hydrogen Production Methods

Each method involves specific considerations regarding efficiency, cost, resource
availability, and potential environmental impact. This array of choices reinforces the
imperative for an informed and strategic approach when opting for the most suitable
hydrogen production technique in each context.

The production of hydrogen encompasses a diverse spectrum of methodologies [35].
Thermochemical processes, which rely on the collaboration of heat and chemical reactions,
enable the extraction of hydrogen from organic sources like fossil fuels, biomass, and
water [36,37]. The intriguing capability to disassociate water (H2O) into its elemental con-
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stituents, hydrogen (H2) and oxygen (O2), prevails through the application of electrolysis
or harnessed solar energy [27,31,38–40]. Biological pathways orchestrated by microorgan-
isms such as bacteria and algae offer an alternative avenue for hydrogen generation. This
rich tapestry of production techniques illuminates the manifold strategies for acquiring
hydrogen. It underscores the nuanced imperative of judiciously selecting the optimal
approach [41] in alignment with contextual nuances and sustainability aspirations.

In specific thermal processes, the energy inherent in diverse resources like natural
gas, coal, or biomass is utilized to extract hydrogen from their molecular composition. In
other approaches, heat, coupled with closed chemical cycles, produces hydrogen from
raw materials such as water [42]. The various thermochemical processes are described in
further detail in Table 1.

Table 1. Classification of hydrogen production methods.

Processes Classification Description Price of Production
(USD per kg) Reference

Thermochemical

Natural Gas Reforming
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Table 1. Cont.

Processes Classification Description Price of Production
(USD per kg) Reference

Water Electrolysis

Proton Exchange Membrane Fuel Cell
Electrolysis (PEMFC)
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Hydrogen production
through PEMFC has

emerged as a promising
method for clean and

sustainable energy. PEMFC
employs a polymeric

membrane as an electrolyte
to facilitate the

electrochemical reaction
between hydrogen and

oxygen, generating electricity
and water as byproducts.

4–6 [26,27,40]

Solid Oxide Electrolysis (SOE)
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Solid oxide electrolysis (SOE)
is a notable method used in
pursuing sustainable energy

solutions. SOE utilizes a
solid oxide material as the

electrolyte to enable an
electrochemical reaction

between steam and
hydrogen, producing

hydrogen while releasing
oxygen as a byproduct.

3.6 [50–52]

Another way to generate hydrogen uses electrolyzers, which employ energy to split
water molecules into hydrogen and oxygen. This technology is already developed and is
available in the market, with systems capable of efficiently utilizing renewable energies for
this separation process.

Following a detailed exploration of diverse hydrogen production methods, a compre-
hensive view of the global energy landscape further contextualizes the significance of these
approaches. When exploring the separate pathways for acquiring hydrogen, it is note-
worthy to analyze these methods according to the existing composition of energy sources
worldwide. The following distribution of energy sources exemplifies this division [43].

As depicted in Figure 1, hydrogen production methods comprise the following pro-
cesses: natural gas steam reforming, which is the most widely used process but leads to
significant greenhouse gas (GHG) emissions. Approximately 48% of the global hydrogen
demand is met through natural gas steam reforming, with 30% coming from oil reforming,
18% from coal gasification, 3.9% from water electrolysis, and 0.1% from other sources [18].
Despite the emissions produced, at present, natural gas is widely used due to its abundance,
efficiency, and low cost. Conversely, only 3.9% of hydrogen is produced by electrolysis; this
is the only method mentioned that can be used with renewable energy and that does not
generate a substantial amount of greenhouse gas (GHG) emissions, positioning itself as the
best alternative for moving toward a transition to sustainable energy.
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Figure 1. Hydrogen percentage by production method (figure elaborated by the authors, based on
the data published in [18]).

2.3. Global Greenhouse Gas (GHG) Emissions

Greenhouse gas (GHG) emissions arise from several key economic sectors, includ-
ing energy, industry, buildings, and transport. In 2021, the total global GHG emissions
amounted to 44 gigatons of CO2 equivalent (GtCO2eq). This measurement represents the
combined impact of all greenhouse gases, expressed in terms of the equivalent amount
of carbon dioxide (CO2). Notably, the largest contributor to these emissions was the en-
ergy systems sector, responsible for 34% (15 GtCO2eq) of the total emissions, followed
by transport (16%; 7.2 GtCO2eq), industry (14%; 6.2 GtCO2eq), and buildings operation
(6%; 2.9 GtCO2eq). Figures 2–5 show the direct emissions produced within each sector,
providing insight into their respective contributions to global GHG emissions. The data
shown in this section were extracted from previous publications [53–56].
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The CO2 global emission graph illustrates the trajectory of emissions from 1970 to
2021, with a notable recurring pattern: the power industry consistently ranks at the top
of the emission list. This trend underscores the significant impact of the power sector on
greenhouse gas emissions. This dominance in emission rankings can be attributed to several
factors but is significantly driven by the necessity of using fossil fuels such as coal, natural
gas, and oil, which release large amounts of CO2 when burned. In addition, the power
sector often faces challenges in adopting cleaner and more sustainable technologies as
transitioning to renewable energy sources requires substantial investments in infrastructure
and may encounter regulatory barriers. That is the reason why, despite efforts to reduce
emissions through efficiency improvements and the adoption of cleaner technologies, the
power industry continues to be a major contributor to GHG emissions [53,58].

Also, the data in Figure 3 confirm that the production of electrical energy significantly
contributes to the emission of greenhouse gases, accounting for approximately 34% of these
emissions. This substantial environmental impact is primarily associated with generating
electricity, with various sources responsible for these emissions. Figure 3 provides a
detailed representation of global energy production sources. The data presented show
that more than 50% of the worldwide energy supply comes from non-renewable sources,
which are known to produce significant greenhouse gas emissions. In contrast, only a
small fraction, approximately 5%, is generated from renewable sources, including solar,
wind, and hydropower. This energy landscape presents a critical challenge in terms of
alignment with the Sustainable Development Goals for 2030, especially Goals 7 and 13,
which emphasize affordable and clean energy in Goal 7 and climate action in Goal 13 [59].
Acknowledging this disparity, the expanding energy sector is actively seeking alternative
solutions to meet the rising global energy demand, with hydrogen emerging as a promising
contender. Its potential to mitigate greenhouse gas emissions and improve the sustainability
of energy generation positions hydrogen as a viable option for addressing environmental
concerns and meeting future energy needs [60,61].
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Based on the previous figures, the total amount of GHG generated from the main
fossil fuels used for electricity generation worldwide is shown in Figure 4 [53,54,62].
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Figure 4. Total GHG emissions from fuel combustion per product around the world (figure elaborated
by the authors, based on the data published in [53,54,62]).

Following the annual reports issued by the International Energy Agency (IEA), 2019
witnessed the emission of 14 gigatons of CO2 equivalent (GtCO2eq) within the energy
sector. Particularly harmful agents were emphasized, with coal, peat, and oil ranking
highest, followed by natural gas. Additionally, biofuels and waste, while contributing
to this emission profile to a lesser extent, also play a role (Figure 3) [53,54,57,60]. It must
be pointed out that the data presented from 2019 has been chosen because it represents
the most recent year from which we can obtain the relevant information without it being
distorted by abnormal conditions, as seen in 2020 and 2021 due to the global pandemic
(COVID-19).

Figure 5 illustrates the percentage of global emissions emitted in 2019; however,
the total energy supplied to the global electrical system amounted to 607,000 petajoules
(PJ) [54,57]. The same figure shows that the energy derived from nuclear or renewable
sources releases no pollutant gases into the atmosphere. Concerning nuclear energy, this
does produce nuclear waste, which incurs high costs and has an extended treatment
process. Power sourced from green or renewable sources does not encounter these issues.
Nevertheless, its primary challenge lies in storage, as the availability of some clean energy
sources is uncontrollable, as exemplified by solar energy, wherein natural occurrences,
such as varying sunlight levels, cannot be regulated. This fact presents a challenge when
meeting energy demand since, for a robust energy system, there must be the capacity to
store energy during periods of low demand and supply additional power during periods
of increased energy demand [12,37,51,54,55,57–64].
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Figure 5 highlights that renewable energy sources have a negligible impact on green-
house gas emissions, effectively contributing 0% to the problem. However, despite this
environmental advantage, the adoption of renewable energy has been limited, as shown
in Figure 4, which can mainly be attributed to the associated costs, including investment
in infrastructure, energy storage, and the grid upgrades needed to accommodate the in-
termittent nature of some renewable sources. In contrast to the environmental benefits
of renewables, their implementation faces economic and infrastructural challenges that
contribute to the difficulties seen in adopting these sources, even considering the United
Nations’ sustainable development goals’ targets.

3. Methodology

For the development of this review, the authors followed a precise path based on the
following steps (see Figure 6):

1. Data collection: Data were extracted from specialized scientific study reports in the
literature, as cited in the bibliography: [1–3,10–16,18–28,30,31,34–40,42,47,50,51,53,55,
60,62–64,66–137].

2. Information authentication: The objective was to provide greater clarity on the ad-
vances made in the field of green hydrogen based on electrolysis. In this context, the
rise of a relatively new technology promoted research and the development of articles
in reputable journals, books, and academic institutions, allowing the identification of
reports that added value to the field.

3. Organization and distribution of topics: A close relationship was found among
different authors, confirming the findings discussed in the literature. Tables 2–4
summarize the relevant information collected, showing the most accurate results in
each statement.

4. Analysis of selected information: The most relevant and accurate information was
chosen, making it possible to carry out the analysis and discussion presented later in
this work. It was very useful to make a table of reference sources through the years
and map the trend of the energy sector and the evolution of renewable technology.
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4. Hydrogen as a Sustainable Solution for Electricity Production

When evaluating the quantity of GHG released into the atmosphere, based on the elec-
tricity production method, and recognizing the need for sustainability in renewable energy
sources, it is necessary to utilize elements such as hydrogen, which has emerged as a viable
option due to its environmentally friendly production process and its ability to capture
surplus energy from natural energy generation methods [24,26,28,32,40,60,133,134,136].

Because of the transition from fossil fuels, countries and international institutions
have established protocols and methodologies for calculating greenhouse gas emissions,
focusing on the main detractor: CO2. Based on this focus, various methodologies have been
employed for the calculation of greenhouse gas emission factors [24,26,28,40,66,120]. These
methodologies categorize greenhouse gas emissions into two branches: direct emissions
and indirect emissions. Direct emissions refer to the amount of CO2eq emitted directly
into the atmosphere in an area or through a productive sector, while indirect emissions are
based on those derived from the transportation, loss, or secondary use of fuels or elements
that generate greenhouse gases. In both cases, the use of methodologies to estimate the
emission factor varies, depending on their scope, using the GHG Protocol, which can be
divided into Scope 1 for direct emissions and Scope 2 for indirect emissions. Emission
factors (EFs) can be obtained following various methodologies, such as the comprehensive
environmental data archive (CEDA), MoEW, or the new stoichiometric method [134], which
use equations to estimate the amounts of CO2eq emitted; alternatively, databases such as
those provided by IPCC, BEIS, IEA or EPA, among other entities [61,92,133], represent the
average of all available data for the estimation of the EFs to be used in each of the various
production activities.

The methodology that is generally followed to calculate emissions involves a system-
atic process with several key steps. It begins with gathering detailed activity data related
to greenhouse gas (GHG) sources, like energy consumption and production processes.
Quality control measures are then applied to ensure data accuracy and completeness. Fol-
lowing this process, emissions are estimated using appropriate factors or methodologies,
as mentioned before. As a result of all these dependencies, it is essential to adhere to
recognized standards, such as the GHG Protocol’s Corporate Accounting and Reporting
Standard, for guidance throughout the process. Based on this approach, EFs help countries
and companies develop reliable emission inventories, which are crucial for understanding,
managing, and reducing emissions effectively. Table 2 illustrates the most widely used
GHG factors in the process of generating electricity, based on the IPCC, GHG Protocol, and
IPHE regarding the main sources of EFs for most countries and companies [61,92,94,96,97].

The methodology used by these countries to calculate the EFs and the GHG impact
on the environment are based on Equations (1) and (2), which are used to calculate the
efficiency and GHG emissions of plant generation, either according to country or depending
on the source [55,62,67,68,92,138].

Table 2. Greenhouse gas (GHG) conversion factors (based on data from References [62,138]).

Type Fuel Unit Factor

Gaseous Fuels
LPG Liters [L] 1.55709

Natural gas Cubic meter [m3] 2.02135

Liquid Fuels Diesel Liters [L] 2.70553

Fuel oil Liters [L] 3.17522

Solid Fuels Coal Tons [Tn] 2252.34

Biogas Biogas Tons [Tn] 1.21518

Biofuel Biodiesel Liters [L] 0.16751

Renewable

Solar PV N/A

0.00
Wind N/A

Hydropower N/A

Geothermal N/A
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Equations (1) and (2) show the formulas used to estimate the efficiency and GHG
emissions of electrolyzers [55,67,69]:

Efficiency % = 100 × (heating value of the hydrogen produced /Electrical energy input) (1)

GHG = Total energy consumed × emission factor (2)

where the useful energy output, the total energy input, and the total energy consumed are
expressed in MWh. GHG is expressed in CO2eq, and the emission factor is expressed in
CO2eq/MWh.

Table 3 provides valuable insights into different feedstocks and their respective meth-
ods of hydrogen production, highlighting the topics of efficiency, GHG emissions, and
production costs. This demonstrates that water-based methods, mainly photolysis driven
by solar energy, offer the advantage of zero GHG emissions, but their efficiency remains
unspecified [24]. Conversely, electrolysis, powered by electricity, demonstrates a relatively
high-efficiency range of 60–90%, with low to moderate GHG emissions and variable produc-
tion costs [103]. Thermal methods, such as thermochemical water splitting (thermolysis),
exhibit a moderate efficiency of 50% but have relatively high GHG emissions and compet-
itive production costs. Biomass-based approaches, including gasification and microbial
electrolysis cells, offer moderate efficiency levels and GHG emissions, with economical
production costs. Hydrocarbon-based techniques, such as steam reforming and partial oxi-
dation, deliver greater efficiency but generate substantial GHG emissions [104,108]. Overall,
the choice of feedstock and production process involves a trade-off between efficiency,
environmental impact, and economic factors, underscoring the importance of selecting the
most suitable method based on specific objectives and constraints within the hydrogen
production sector.

Table 3. Summary of the principal data of hydrogen production techniques, grouped according to
the production process (table elaborated by the authors, based on the data published in [104], with
substantial modifications).

Feedstocks Energy Production
Process Efficiency 1 (%)

GHG
Emissions 2

(kg CO2 per kg
of Hydrogen)

Price of
Production 3

(USD per kg)
Reference

Water

Solar Photolysis N/A 0 10.36 [54,57,60,76,77,132]

Electricity

Alkaline
electrolysis 60–80% 2.93 1.84–2.88

[37,49,52,57,60,77,98,
122,126,139]

Proton
exchange

membrane
electrolysis

(PEM)

70–90% 2.37 4–6

Solid oxidant
estate

electrolysis
(SOE)

80–98% 1.49 3.6

Thermal
Thermochemical
water splitting
(thermolysis)

50 9–20 2.17–2.63 [47,48,76,124,140]

Biomass

Thermal Gasification 35–50 2–3 1.77–2.05 [55,124,128,130,141]

Electricity Microbial
electrolysis cell 78 1–2 N/A [41,55,74,123,134]
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Table 3. Cont.

Feedstocks Energy Production
Process Efficiency 1 (%)

GHG
Emissions 2

(kg CO2 per kg
of Hydrogen)

Price of
Production 3

(USD per kg)
Reference

Hydrocarbons Thermal

Steam
reforming 70–85 8–10 2.27 [55,125,131]

Partial
oxidation 60–75 9–12 N/A [36,37,125,126]

Autothermal
reforming 60–75 9–12 2.08 [37,55,125]

Thermal
decomposition

(pyrolysis)
58 10.9 2.6–3.2 [37,47,55,124]

Steam-iron
process N/A 1–2 N/A [55,124,125,131]

1 Range of efficiency may vary, depending on the fabricant. 2 GHG emissions may vary, depending on the fabricant
and technology. 3 Cost depends on the location of H2 production, where energy price affects those values.

Based on the data shown in Table 3, electrolysis (alkaline, PEM, and SOE) stands out
as a compelling choice for hydrogen production when considering the data presented.
First, it boasts a relatively high efficiency range of 60–90%, making it one of the most
energy-efficient methods available. This efficiency translates into effectively utilizing the
energy input, making it an attractive option for clean hydrogen production. Additionally,
the low to moderate emissions from electrolysis further enhance its environmental appeal.
Compared to some other methods with higher emissions, such as hydrocarbon-based
techniques, electrolysis contributes to a smaller carbon footprint in the hydrogen production
process [53–55,125,128,129]. Similarly, there are variations within each of the technologies
used in the electrolysis process; the data show that alkaline electrolysis offers advantages
due to its low cost, but the lower level of efficiency achieved and the GHG emissions
make this technology less preferable when compared to others like PEM or SOE. PEM
technology has an efficiency range of between 70 and 90%, while SOE technology ranges
between 80 and 98%, particularly in specific cases where system feedback is present and at
high temperatures making this more acceptable in terms of energy efficiency and lower
pollutant levels.

At present, proton exchange membrane (PEM) electrolysis stands out as one of the
most prevalent methods for hydrogen production. However, despite its popularity, PEM
electrolysis faces challenges due to its high cost and system complexity, while alkaline
electrolysis is facing difficulties with the integration of renewable energy sources because
they are less responsive to fluctuations in power supply. All these challenges underscore
the importance of ongoing research and development efforts aimed at energy integration
to enhance the economic viability and sustainability of hydrogen production methods.

In general terms, electrolysis is versatile and adaptable to various energy sources,
including electricity from renewable sources, ensuring that electrolysis can align with
green energy initiatives by harnessing clean electricity to produce hydrogen with minimal
environmental impact. Additionally, electrolysis offers variable production costs, allowing
flexibility in its production strategies. It can operate efficiently with low-cost electricity,
making it economically competitive in the evolving energy landscape [70–73,77,141–143].
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5. The Principal Characteristics of Energy Depend on the Production Process
of Hydrogen

The pursuit of a sustainable energy future has elevated hydrogen as a vital clean and
efficient energy carrier, which is essential for combating climate change and advancing
global energy independence. Among the myriad methods of hydrogen production, elec-
trolysis emerges as a pivotal player, driven by its unique attributes and key role in shaping
the trajectory of hydrogen applications [122]. Beyond its technological advancements,
electrolysis holds the potential to dictate the course of hydrogen utilization in diverse
industries and regions worldwide, ensuring secure energy supplies for the future.

Notably, solar-powered water electrolysis, utilizing photovoltaic energy, has garnered
significant attention as a green hydrogen production method. However, a comprehensive
evaluation of its environmental impacts and net energy balance is imperative to ascertain
its contribution to global decarbonization efforts [23,38,114].

This is why ensuring a sustainable and green hydrogen industry requires a thorough
assessment of the efficiency, emissions, and economic viability of various hydrogen produc-
tion methods. Figures 7–9 serve as a comprehensive foundation for objectively evaluating
and distinguishing among these methods, based on a review of a wide range of books and
scientific papers [12,31,39,55,63,112,126,127].
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Gasification, electrolysis, and steam reforming are the most widely used methods for
hydrogen generation. However, as demonstrated in Figure 7, not all these methods offer
the highest achievable efficiency regarding hydrogen output per kilowatt hour of energy
consumed (kWh). Hydrogen generation is highly energy-intensive, making efficiency a
critical factor when selecting the hydrogen production method. Electrolysis is the most
efficient method, achieving an efficiency rate of up to 90%, surpassing all other options. In
contrast, the second most efficient method, steam reforming, achieves only 85% efficiency.
However, as illustrated in Figure 8, when transitioning to a more sustainable economy, the
environmental impact of steam reforming is not favorable.
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The chart in Figure 8 provides a comparative analysis of the greenhouse gas emis-
sions resulting from the methods discussed in this article. The larger areas on the chart,
particularly steam reforming, autothermal reforming, thermochemical water splitting (ther-
molysis), pyrolysis, and partial oxidation, represent the most environmentally harmful
methods among those presented. In contrast, electrolysis and the steam-iron process are
the processes that contribute the least to this type of emission.

The cost of photolysis is exceptionally high compared to other methods, due to the
time it takes to produce 1 kg of hydrogen. Following photolysis, electrolysis ranks as
the second-highest cost method, potentially reaching a maximum price of USD 6.27 per
kilogram produced. The cost of electrolysis is contingent on the energy source employed,
which can vary from photovoltaic panels to wind turbines, both of which currently entail
substantial expense (see Figure 9). However, it is expected that these costs will decrease with
sustainable development. In contrast, methods such as steam reforming are among the most
economical options, due to the cheapness of the source of their energy supply, biomass.

As presented in Figures 7–9, evaluating these dimensions will seek to offer a holistic
perspective, enabling the identification of the most economically and environmentally
advantageous hydrogen production method.

Driven by the increasing focus on sustainability and reduced environmental impact,
electrolysis is the most suitable method for hydrogen production. While it may not be the
cheapest option, its high efficiency and minimal greenhouse gas emissions align well with
the UN’s SDGs for 2030. However, it is important to consider regional variations, energy
source availability, and technological advancements in making a well-informed decision
regarding hydrogen production.

6. Efficiency Trends in Hydrogen Electrolysis and Fuel Cells Advances and Challenges

The efficiency of different hydrogen production methods through electrolysis is a
critical factor in the quest for sustainable energy generation [112]. Exploring the efficiency
trends of various hydrogen electrolysis methods brings to light the need to examine a
pivotal aspect of hydrogen production that directly impacts its viability and adoption.

The objective of this section is to offer a detailed account of the efficiency trends of
three principal hydrogen electrolysis techniques, PEM, AWE, and SOE, spanning the years
from 1998 to 2020 to show the evolution of the different efficiency trends in hydrogen
electrolysis methods.

Over the past two decades, the landscape of hydrogen production through electrolysis
methods has witnessed remarkable progress. This transformation is illustrated in the effi-
ciency trends of Table 4 for three primary methods: the proton exchange membrane (PEM)
method, AWE, and solid oxide electrolysis (SOE). The hydrogen production journey began
in 1998, with PEM boasting an initial efficiency of 55%. Though there was a brief hiatus in
the data, after 2010, PEM efficiency showed an impressive upswing, culminating at 90%
in 2020. This upward trajectory underscores the substantial technological advancements
within PEM electrolysis research, and this progress highlights why it may be considered
the most promising technology for hydrogen production.

Table 4. Efficiency of different hydrogen electrolysis methods.

Year PEM AWE SOE Reference

1998 55% - - [115]

2002 55% - - [101,113]

2004 60% 60–70 65% [13,27]

2010 55% 61% 98% 1 [24,30,119]

2012 65% 60% [28,120,121]
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Table 4. Cont.

Year PEM AWE SOE Reference

2014 70% 70–75% - [14,27]

2015 70% 70–75% 83% 2 [40,117]

2017 74.1% 73% 68–66% [29,69]

2019 74% 80% - [26]

2020
90% 80% 98% 3 [22,23,116]

2022
1 At 650 ◦C. 2 Average. 3 Has a feedback system.

Similarly, AWE efficiency data, available from 2004 onwards, reveal a steady climb
from an efficiency range of 60–70% to a robust 80% in 2020. This incremental improvement
in AWE efficiency underscores the continued progress and innovation of this method.

Most striking is the journey of solid oxide electrolysis (SOE), which showcased media
of 83% efficiency in 2015. It is important to note that SOE operates at very high temperatures,
having been tested at 650 ◦C in 2010 and using water vapor rather than liquid water.
This method is still considered water electrolysis but instead involves converting steam
to hydrogen and oxygen, achieving a high efficiency milestone of 98%. However, the
economic feasibility of the SOE method is highly sensitive to factors such as the initial
cost of the SOE stack, stack lifetime, and local electricity prices. This sensitivity analysis
indicated that the long payback time and high investment costs may challenge its economic
viability [110].

The upward trajectory of efficiency trends in hydrogen production by electrolysis
methods sets the stage for the immediate and future viability of hydrogen as a clean
energy carrier. Substantial technological advancements show that the ongoing global
shift toward cleaner and more sustainable energy solutions is gaining momentum. The
steady evolution of hydrogen electrolysis methods, in synergy with renewable energy
sources such as photovoltaic systems, is primed to catalyze the development of cleaner
energy technologies.

6.1. Fuel Cells

Ruled by the same principle as electrolyzers, fuel cells are classified primarily by the
kind of electrolyte they use. The classification determines the kind of chemical reactions
that occur within the cell, as well as its operational characteristics. The main types of fuel
cells based on electrolyte composition include PEMFC, solid oxide fuel cells (SOFC), and
alkaline fuel cells (AFC). Each type has its own advantages, limitations, and suitability for
different applications, ranging from portable electronics to stationary power generation.
Therefore, understanding electrolyte classification is crucial for grasping the functionalities
and potential applications of fuel cells.

As a result of the development of new technologies for generating electrical energy
from hydrogen, several institutions have been established worldwide, such as the IPHE,
IRENA, IEA, EHA, and NREL, among others, which facilitate the transition of knowledge
and provide guidance to nations on working toward a common objective, accelerating
the transition process toward new green technologies. Furthermore, Table 5 describes
according to country the status of the development of the three main fuel cells at present:
PEMFCs, SOFCs, and AFCs.
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Table 5. Status of fuel cell types according to the different countries.

Fuel Cell Type Country Status Reference

Proton exchange membrane fuel cells (PEMFCs)
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Table 5 presents the status of fuel cell technology across different countries and show-
cases a diverse landscape of advancements and priorities. In the area of PEMFCs, the
United States and China stand out as leaders in hydrogen production, while countries
like Germany, Spain, and France are spearheading the development of green hydrogen
through solar energy. SOFCs see Europe implementing new materials and fabrication
processes, with China and the United States prioritizing research to enhance the technol-
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ogy’s reliability. Japan leads in the demonstration of large-scale SOFC deployment. AFCs
enable the United States to boast the lowest capital cost of implementation, while China
focuses on hydrogen production at varying scales. In general terms, the approaches taken
by nations to drive fuel cell technology forward emphasize the importance of international
collaboration in fostering sustainable energy solutions.

6.2. Current Challenges in Fuel Cell Technology

Fuel cells, while extremely promising in their potential to provide clean and efficient
energy, face some critical challenges that may slow down their implementation. These
challenges include high manufacturing costs, the relatively low energy density of hydrogen,
safety concerns, fuel cell durability issues, inadequate hydrogen refueling infrastructure,
and the complexities of hydrogen storage and transportation [9,145].

One significant issue is the reduction of platinum in the catalyst, which is essential to
lower costs and enhance the scalability of fuel cells. Platinum is a precious metal, meaning
that its high cost is one reason for the limitation of the widespread adoption of fuel cell
technology [146,147]. Research is focused on finding alternative materials or reducing the
amount of platinum required to develop a fuel cell without compromising the efficiency of
the cell.

Another critical challenge is hydrogen storage and transportation. Efficient and safe
storage of hydrogen is crucial for the viability of fuel cells, especially in mobile applications.
Current storage methods, such as high-pressure tanks and cryogenic storage, are presenting
challenges in terms of safety, cost, and energy density [148,149]. Researchers are exploring
advanced materials, such as metal–organic frameworks (MOFs) and chemical hydrogen
storage, to overcome this hurdle [150–152].

6.3. Improvements in Fuel Cell Efficiency

Improving the efficiency of fuel cells is essential for enhancing their viability and
broader adoption in various applications. Recent research highlighted several strategies to
achieve this goal, focusing on technological advancements [153–155].

One significant approach is the cogeneration of heat and power. Cogeneration, also
known as combined heat and power, involves the simultaneous production of electricity
and useful heat from the same energy source. This approach not only optimizes energy
production efficiency but also contributes to a more sustainable energy system [156,157].
By capturing and utilizing the waste heat produced during electrochemical processes, the
overall efficiency of the fuel cell system may be significantly increased [158]. This approach
is essential to make progress in fuel cell technology and achieve broader adoption.

Water and thermal management for PEMFCs is crucial for maintaining performance
and durability. Effective water management ensures that the membrane remains hydrated,
which is necessary to maintain proton conductivity in cells. Thermal management involves
controlling the temperature within the fuel cell to prevent overheating and ensure optimal
operating conditions. Implementing advanced cooling systems and better water man-
agement strategies can significantly improve the overall efficiency and reliability of fuel
cells [159–161].

Moreover, the integration of advanced control systems can help optimize the perfor-
mance of fuel cells by adjusting operating parameters in real time to match the demand and
conditions. Control systems developed using MATLAB and Simulink enable the simulation
of complex fuel cell behaviors and could help with the integration of various auxiliary
components such as air and hydrogen supply lines, cooling circuits, and the PEMFC stack
unit [162]. These systems could also incorporate advanced algorithms such as adaptive
neural fuzzy inference systems and fuzzy logic controllers, which are effective in managing
nonlinearities and ensuring optimal operation under varying conditions [163]. Additionally,
distributed intelligence- and agent-based control architectures have been shown to enhance
the efficiency and autonomy of PEM fuel cells by enabling real-time adjustments based
on sensory and contextual information [164]. These advancements in control strategies
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are crucial for reducing degradation, improving energy management, and extending the
lifespan of fuel cell systems [165].

7. Recent Advancements in Hydrogen Production and Storage Technologies

The pursuit of sustainable and efficient hydrogen production methods has led to
significant advancements in technology. These cutting-edge innovations are pivotal in
addressing the global energy demand while mitigating environmental impacts. This section
explores the latest developments in hydrogen production techniques, highlighting their
potential to revolutionize the energy sector [25].

7.1. Hydrogen Production

Advancements in hydrogen production technologies are focused on improving the
efficiency of the systems, as well as reducing costs and enhancing sustainability. Table 6
summarizes some of the most recent and innovative methods developed in the field.

Table 6. Recent advancements in hydrogen production technologies.

Technology Production
Process Advantages Disadvantages Key Developments Reference

Mixed Seawater Electrolysis

There is an
abundant seawater

resource with no
pre-treatment

required for use

The corrosion and
energy

consumption of
the process

Utilizing seawater
without pre-treatment;
addressing corrosion

and energy
consumption

[166–168]

Compact Heat
Integrated Reactor
System (CHIRS)

Steam Reforming

Suitable for
portable and

stationary
applications

Overall efficiency
of compact

systems is slightly
lower than

traditional systems

Efficiency improved
by splitting water

addition in
conventional systems

[169]

Decoupled Water
Splitting

Electrochemical
and chemical cycle

in near-neutral
NaBr electrolyte

High Faradaic and
electrolytic
efficiency,

continuous
operation without

membranes

Requires complex
control of
electrolyte
conditions

Has demonstrated
high efficiency and

scalability, using
bromide/bromate

redox couple to make
continuous hydrogen

and oxygen
production

[170]

Decorated
Nanocrystals Photocatalysis

Enhanced
hydrogen

production and
improved

efficiency of water
splitting

Potential cost and
complexity of

synthesis methods

Metallic nanocrystals
of Pt and Cu can act as

co-catalysts when
combined with TiO2
semiconductors to
generate hydrogen

[171]

Table 6 provides a detailed comparison of the various advanced hydrogen production
technologies, highlighting their unique strengths and key developments. These tech-
nologies showcase the diverse approaches that can exist and that are being developed
to meet the global demand for sustainable hydrogen. Ongoing research and innovations
are crucial for enhancing these technologies and contributing to the advancement of the
hydrogen economy.

An important aspect of the newer hydrogen production methods is their integration
with carbon capture, utilization, and storage (CCUS). These technologies capture the
carbon dioxide emissions produced during hydrogen production and either utilize them
in another industrial process or could store them underground. This integration is crucial
for minimizing the carbon footprint of hydrogen production [172–174]. Recent research
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focuses on optimizing CCUS processes to enhance their efficiency and feasibility when they
are combined with various production methods [175–178].

7.2. Hydrogen Storage Technologies

The rapid development of hydrogen production means that an efficient hydrogen
storage system is crucial for the viability of hydrogen as an energy carrier. Various hydrogen
storage technologies are being explored and developed to meet this necessity. Table 7
examines recent developments in hydrogen storage technologies.

Table 7. Recent developments in hydrogen storage technologies.

Technology Key Developments Status Potential Applications Reference

Advanced
Metal-Organic

Frameworks (MOFs)

Development of new MOFs
with higher storage capacities

and improved release
mechanism

Development Portable and stationary
storage systems [178,179]

Liquid Organic
Hydrogen Carriers

(LOHCs)

Advancements in catalysts to
improve the efficiency of

hydrogen release from LOHCs

Research and
Development

Transportation of
hydrogen and

large-scale storage
projects

[180–182]

Hybrid Energy Storage
System

Frequency-decoupling-based
power split with dual-loop
control, hysteresis current

control, and low-pass filtering

Development

Energy storage in DC
microgrids, improved
bus voltage regulation

and current
management

[183]

Overall, these technological advancements are critical for overcoming the existing
limitations of hydrogen storage and are essential for the successful integration of hydrogen
into the energy landscape. The continuous improvement in storage capacities, release
mechanisms, and system controls shows the potential of hydrogen as a key player in
achieving sustainable energy goals. This progress not only supports the development of
hydrogen infrastructure but also promotes the transition toward a more sustainable and
resilient energy ecosystem.

8. Discussion

Based on previous sections, this evaluation of hydrogen production methods, consider-
ing key factors such as efficiency, environmental impact, and associated costs, as discussed
earlier, reaches the following conclusions.

Hydrogen production plays a key role in the search for sustainable energy solutions, in
accordance with the United Nations’ Sustainable Development Goals for 2030, specifically
Goals 7 and 13, addressing affordable and clean energy and climate action.

As mentioned in Section 2, energy production tops the list of GHG emissions, con-
tributing up to 34% of the total gases emitted into the atmosphere (20 GtCO2eq). From
this evaluation, hydrogen emerges as a sustainable solution for electricity generation. As
presented in Table 3 of Section 4, hydrogen production methods can be identified that do
not cause significant harm to the environment. Photolysis stands out as the least serious
offender, producing 0 kg of CO2 per kg of H2, while thermolysis emerges as the major
contributor, with 20 kg of CO2 per kg of H2 produced.

The methodology employed played a significant role in how the findings in this article
were presented. The information presented in this study is derived from a wide range
of extensive sources. These sources provide detailed specifications for only one of the
methods that were presented and lack a comprehensive comparison of the most commonly
used hydrogen production methods. Table 1 summarizes the three key factors influencing
hydrogen production: efficiency, environmental impact, and costs.
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Similarly, Figures 7–9 provide great visibility for important aspects that must be
considered to achieve an effective transition toward a more sustainable energy society. The
tables and figures presented herein provide a better focus on the topic discussed, given the
current scarcity of information. This was possible by accurately and truthfully compiling
the data presented in various articles, journals, and books over the years. This is evident in
Table 4, where an analysis of the data from 1998–2022 is provided.

A comparison among different production methods can be achieved through the
three most important aspects: efficiency, costs, and the amount of GHG emitted. Here,
the efficiency of the PEM electrolysis process stands out (up to 90%), along with how
sustainable it can be, with a maximum of 2 kg of CO2 per kg of H2 produced. Together
with the steam-iron process and microbial electrolysis cells, these production methods have
the lowest environmental impact.

In this same section, the different production costs of each method were finally related,
showing that renewable feedstock and energy have the highest prices, led by photolysis
(USD 10.36) and electrolysis, from USD 4.22 to USD 6.27. In contrast, the lowest costs are
obtained when using fossil fuels as feedstock, such as in pyrolysis (USD 1.25).

Efficiency is crucial, as it directly impacts the amount of hydrogen generated per unit
of energy consumed. High efficiency implies a more resource-efficient process, which is
essential for achieving sustainable energy production. Environmental impact is another
pivotal consideration, especially in terms of addressing climate action. A production
method that minimizes greenhouse gas emissions aligns with the global commitment to
mitigate climate change. Moreover, cost analysis is integral to making these methods
practical and economically viable for broad-scale implementation.

The efficiency of different hydrogen production methods through electrolysis is a
critical factor in the quest for sustainable energy generation. Table 4 in Section 6 shows the
trend of various hydrogen electrolysis methods, wherein SOE stands out with a remarkable
efficiency surge; however, the dynamic nature of the SOE developmental phase introduces
variability to the data. In addition, other technologies such as PEM have shown significant
development over the years. AWE has improved its current efficiency to 80% since it
entered the market in 2004 with only 60%.

These data indicate that the upward trajectory of efficiency trends in hydrogen pro-
duction by electrolysis methods paves the way for the immediate and future viability of
hydrogen as a clean energy carrier. Hydrogen production is looking to play a critical role
in the global transition to sustainability.

The energy supply system is still years away from achieving 100% sustainable energy.
As presented in Section 6.2, there are still some challenges, such as the high cost of man-
ufacturing, infrastructure, and safety. However, the current investment in research and
development, as presented in Section 7, will contribute greatly to this transition.

9. Conclusions

In this work, an assessment of the various feedstocks and their corresponding hydro-
gen production methods was undertaken, considering factors such as efficiency, greenhouse
gas (GHG) emissions, production costs, and current challenges. This endeavor aimed to re-
duce the information gap surrounding hydrogen production methods, particularly in costs
and GHG emissions. The primary focus was to obtain a relevant comparison contrasting the
methods utilizing renewable energy sources with those relying on fossil fuels. Electrolysis
stands out as a prime choice for clean hydrogen production. Notably, it contributes low
to moderate GHG emissions, substantially diminishing carbon footprints compared to
high-emission techniques. Based on the results revealed by the renewable energy sources
of photolysis, electrolysis, gasification, and microbial electrolysis cells, it is noteworthy to
emphasize that one of the key advantages of electrolysis lies in its adaptability regarding
diverse energy sources, including clean electricity from renewables.
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The data presented in this study aims to reduce the existing gap in available informa-
tion on research into hydrogen production by collecting and summarizing the information
scattered on the internet. The results shown are expected to facilitate the decision-making
process, considering regional variations, energy source availability, and the potential for
technological advancements that may further enhance the economic viability of electrolysis.
As nations and industries strive to achieve their climate and sustainability targets, under-
standing the principal characteristics of hydrogen production methods becomes essential
in this transformative journey toward a cleaner and more efficient energy future.
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