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ABSTRACT

Climate change is expected to increase the severity and frequency of drought in the Caribbean. Un-

derstanding drought variability and its trends is therefore critical for improving resiliency and adaptation

capacity of this region, as well as for assessing the dynamics and predictability of regional hydroclimate across

spatial and temporal scales. This work introduces a first of its kind high-resolution drought dataset for the

Caribbean region from 1950 to 2016, usingmonthly estimates of the ‘‘self calibrating’’ Palmer drought severity

index (scPDSI), with the physically based Penman–Monteith approximation for the potential evapotrans-

piration. Statistically downscaled data products, including reanalysis, are employed to establish an historical

baseline for characterizing drought from 1950 to the near present. Since 1950, the Caribbean has been affected

by severe droughts in 1974–77, 1997/98, 2009/10, and 2013–16. Results indicate that the 2013–16 drought is the

most severe event during the time interval analyzed in this work, which agrees with qualitative reports of

many meteorological institutions across the Caribbean. Linear trends in the scPDSI show a significant drying

in the study area, averaging an scPDSI change of 20.09 decade21 ( p , 0.05). However, this trend is not

homogenous, and significant trends toward wetter conditions in portions of the study area were observed.

Results further indicate a strong influence of both tropical Pacific and North Atlantic oceans in modulating

drought variability across the study domain. Finally, this effort is the first step in building high-resolution

drought products for the Caribbean to be updated regularly, with the purpose of drought monitoring and

eventually seasonal drought prediction.

1. Introduction

Droughts are among the deadliest and costliest natu-

ral phenomena, leading to food shortages and annual

losses of billions of dollars worldwide (e.g., Wilhite et al.

2007; Howitt et al. 2014). Although droughts do not

unfold as rapidly as other meteorological hazards (e.g.,

hurricanes or floods), their duration can put food secu-

rity, water storage, and even energy production at risk.

A drought is usually characterized by below-normal

precipitation, and often associated with above-normal

temperatures that may span from several months to

years and, in some cases, decades (Dai 2011; Cook et al.

2016). From observations and model simulations, pre-

vious studies have shown an increase of the global

drought area since 1950 (Dai et al. 2004; Dai 2011, 2013;

Dai and Zhao 2017; van der Schrier et al. 2013; Cook

et al. 2015). These findings further correspond to in-

creasing global temperatures and hence evaporative

demand, which in turn has been identified as a crucial

driver in the observed trend (Dai 2013; Dai and Zhao

2017; van der Schrier et al. 2013; Cook et al. 2015; Zhao

and Dai 2015). Furthermore, projections from phases 3

and 5 of the Coupled Model Intercomparison Project

(CMIP3 and CMIP5) have suggested a substantial in-

crease in global aridity by the end of the twenty-first

century as a consequence of rising concentrations of

greenhouse gases (Dai 2013; IPCC 2014; Ault et al. 2014;

Cook et al. 2015; Zhao and Dai 2015). Model simula-

tions also indicate that the greatest decline in pre-

cipitation will occur in certain areas of the tropics and

subtropics, where rainfall could be reduced by as much

as 50% on average in regions like the Caribbean and

Central America (IPCC 2014; Zhao and Dai 2015). In

addition to these rainfall shortages, higher future tem-

peratures could lead to even more severe droughts dueCorresponding author: Dimitris Herrera, dah386@cornell.edu

Denotes content that is immediately available upon publica-

tion as open access.

1 OCTOBER 2017 HERRERA AND AULT 7801

DOI: 10.1175/JCLI-D-16-0838.1

� 2017 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

Unauthenticated | Downloaded 03/27/24 01:01 AM UTC

mailto:dah386@cornell.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


to an increased atmospheric demand of moisture (Dai

2013; IPCC 2014; Cook et al. 2014, 2015; Zhao and Dai

2015). Consequently, this would drive or worsen drought

risk even if precipitation does not change appreciably

from historical averages (Cook et al. 2015; Ault

et al. 2016).

Although many regional subtropical drying trends are

robust across observational and model studies (IPCC

2014; Ault et al. 2014; Cook et al. 2015; Zhao and Dai

2015), large uncertainties in this picture originate from

differences in data and models used for assessing

drought. For example, Dai and Zhao (2017) calculated

the Palmer drought severity index (PDSI)—a widely

used indicator of agricultural drought—using different

underlying climate data products. They found that his-

torical trends and variances of the PDSI are sensitive to

differences between observational data products (espe-

cially precipitation, net radiation, and wind speed) and

the calibration period used to normalize the index, al-

though the latter has a smaller contribution than the

underlying climate data. In terms of future projections

of drought, both CMIP3 and CMIP5 are consistent in

showing increased global aridity in the twenty-first

century. Major differences among models are mostly

due to discrepancies in projected precipitation (Zhao

and Dai 2015, 2017). However, uncertainties in future

projections of drought still persist on simulated regional

trends and variances, which could be due to the domi-

nant influence of the natural internal variability of

drought at regional scales (Dai 2013; Zhao and Dai

2015, 2017).

The Caribbean region is vulnerable to climate change

as a result of more severe and widespread droughts

observed and projected at the end of the twenty-first

century (IPCC 2014; Stephenson et al. 2014, 2016). The

greatest decline in rainfall projected for the Caribbean

might occur during boreal summer (June–August;

Rauscher et al. 2008; Campbell et al. 2011; Karmalkar

et al. 2011; IPCC 2014), a critical season for capturing

and storing water in many countries of the region. In

addition, the inherent insular nature of the Caribbean

islands makes them especially vulnerable to drought

because water cannot be collected, moved, or stored on

large spatial scales (as it can be in the U.S. Southwest).

Recent studies have also indicated that many of the

small islands in the Caribbean Sea will face un-

precedented freshwater and groundwater stresses be-

cause of climate change (e.g., Holding et al. 2016;

Karnauskas et al. 2016). The region is made even more

vulnerable by its dense population and limited economic

growth, most of which depends on tourism and a poorly

developed agricultural sector (Sahay 2005; Martin and

Schumacher 2011; IPCC 2014).

Instrumental and historical records document the

occurrence of multiyear droughts in the Caribbean

and Central America during the last 60 years (e.g.,

Larsen 2000; Méndez and Magaña 2010; Peters 2015;

Blunden and Arndt 2016). These events have caused

water shortages in agriculture, energy generation, and

municipal usage, affecting the economies of many

countries in the region (Larsen 2000; Peters 2015;

OCHA 2015; FAO 2016). Some of those dry intervals

have been linked to the warm phase of El Niño–
Southern Oscillation (ENSO; Peters 2015; Blunden

and Arndt 2016), including the 1997/98, 2009/10, and

2013–16 droughts. The recent drought between 2013

and 2016 has been referred to as the most severe event

in over 50–100 years in many countries of the Carib-

bean and Central America by some of their public

institutions (e.g., DRNA 2016; IMN 2016), although

this claim lacks firm quantitative backing because of

the paucity of hydroclimatic data in the region. While

the effects of this event have not yet been fully

quantified, agricultural losses of over $200 million

have been estimated in El Salvador and Guatemala

(OCHA 2015; FAO 2016). For reference, the gross

domestic product of these two countries was $25.85

and $63.79 billion, respectively, in 2015 according to

the World Bank.

Although the Caribbean is likely to be affected by

drought and freshwater stress in the future, there is

currently no single study characterizing historical

droughts and their trends at a spatial resolution ap-

propriate for the topography of the region. A few

studies have used data from weather stations, but they

do not fully cover the entire region (e.g., Larsen 2000;

Giannini et al. 2000, 2001a,b; Taylor et al. 2002; Jury

et al. 2007; Peters 2015; Blunden and Arndt 2016).

Regional and global station datasets, such as the

National Oceanic and Atmospheric Administration

(NOAA) Global Historical Climatology Network

(GHCN), are missing a considerable amount of data

in many sites in the Caribbean region and Central

America, and many of the data that do exist are of

inconsistent quality (Blunden and Arndt 2016). Fur-

thermore, existing gridded drought products (e.g., Dai

et al. 2004; Dai 2011; Vicente-Serrano et al. 2010;

Sheffield et al. 2012; van der Schrier et al. 2013) are

generated at spatial scales of 50–100 km. At these

scales, spatial variations in drought associated to the

complex topography of many islands in the Caribbean

Sea cannot be resolved. For example, a single grid cell

of 0.58, the highest resolution drought datasets cur-

rently available (Vicente-Serrano et al. 2010; van der

Schrier et al. 2013) covers more than twice the area of

Martinique (;1200km2). Therefore, products like this
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one are not suitable for assessing the effects of local

topography on enhancing or diminishing drought in the

Caribbean or for evaluating how topography might in-

fluence the interannual variability and decadal trends of

drought in the region. These products were also not

designed to be regularly updated at monthly time scales

while still providing an internally consistent picture of

historical variations.

Given the limitations of existing products for charac-

terizing andmonitoring drought at small spatial scales in

the Caribbean and Central America, here we introduce

a high-resolution gridded drought dataset based on the

‘‘self calibrating’’ PDSI (scPDSI; Wells et al. 2004) that

spans 1950–2016. Our results yield an atlas that is rele-

vant to stakeholders and researchers alike. It can further

be updated on a monthly basis for ongoing drought

monitoring and relief efforts. (Our atlas is available

online at http://ecrl.eas.cornell.edu/products/caribbean-

drought/index.html.)

2. Data and methods

a. Data

The climate data products used in this work are listed

in Table 1. To calculate potential evapotranspiration

(PET), we used statistically downscaled National

Centers for Environmental Predication (NCEP)–

National Center for Atmospheric Research (NCAR)

reanalysis data (Kalnay et al. 1996) of monthly aver-

ages of temperature (Tmax, Tmean, and Tmin), cloud

cover (to derive the net radiation), and wind speed that

have native resolutions of approximately 1.88 and 2.58
in latitude and longitude (;200 and ;280km, respec-

tively). To assess the consistency of downscaled reanalysis

temperature products, we also used gridded monthly

temperature means from the 18 Berkeley Earth

Surface Temperature (BEST) dataset (Mueller et al.

2013; Rohde et al. 2013). The BEST dataset incorpo-

rates approximately 400 land-weather stations in our

study domain (defined as the region 68–308N, 908–
608W; Fig. 1), including data from the GHCN and

other global and regional climate data networks

(Rohde et al. 2013). As compared to similar products,

the number of records used by BEST is substantially

higher. For example, the University of East Anglia

Climatic Research Unit (CRU) Time Series, verstion

3.24 (TS3.24), dataset (Harris et al. 2014) currently uses

less than a hundred temperature stations in the Ca-

ribbean and Central America. BEST further differs

from other global temperature datasets in the manner

of treating temperature data, in which stations with

discontinuities (e.g., missing data) are split and treated

as different series, rather than undergoing a homoge-

nization process (Mueller et al. 2013; Rohde et al.

2013). Split stations are then weighted based on their

accuracy, as evaluated from nearby stations using a

kriging approach (Rohde et al. 2013). The details of the

method implemented to construct this dataset are avail-

able in Rohde et al. (2013). The BEST dataset is further

updated on a regular basis, which is advantageous for

drought monitoring.

Gridded monthly totals of precipitation were obtained

from of the Global Precipitation Climatology Centre

(GPCC), version 7 (V7), land surface dataset (Schneider

et al. 2015a), which is based on 75000 quality-controlled

rain gauges worldwide, including approximately 400 in

the Caribbean and Central America. We used the GPCC

V7 ‘‘combined product’’ (http://www.esrl.noaa.gov/psd/

data/gridded/data.gpcc.html), with a native resolution of

18 (Schneider et al. 2015b). This version incorporates the

full dataset from 1901 to 2014 with a monitoring product

spanning from 2014 to the near present. Although various

gridded precipitation products are currently available, we

TABLE 1. Monthly climate datasets used in this work.

Variable Dataset Native resolution Period used Reference

Precipitation GPCC V7 18 1949–2016 Schneider et al. (2015a,b)

CHIRPS 0.058 1981–2016 Funk et al. (2015)

WorldClim (climatology) ;1 km 1950–2000 Hijmans et al. (2005)

CHELSA (climatology) ;1 km 1979–2013 Karger et al. (2016)

Temperature BEST 18 1949–2016 Rohde et al. (2013)

NCEP–NCAR reanalysis 2.58 1949–2016 Kalnay et al. (1996)

WorldClim (climatology) ;1 km 1950–2000 Hijmans et al. (2005)

Cloud cover NCEP–NCAR reanalysis ;28 1949–2016 Kalnay et al. (1996)

Wind speed NCEP–NCAR reanalysis 2.58 1981–2010

(climatology)

Kalnay et al. (1996)

Elevation WorldClim ;1 km — Hijmans et al. (2005)

Available water

holding capacity

IGBP-DIS 0.088 — Global Soil Data Task

Group (2000)

1 OCTOBER 2017 HERRERA AND AULT 7803

Unauthenticated | Downloaded 03/27/24 01:01 AM UTC

http://ecrl.eas.cornell.edu/products/caribbean-drought/index.html
http://ecrl.eas.cornell.edu/products/caribbean-drought/index.html
http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html
http://www.esrl.noaa.gov/psd/data/gridded/data.gpcc.html


selectedGPCCV7 for three reasons. First, GPCCdata are

updated on a regular basis, whereas most similar pre-

cipitation datasets (i.e., spanning since at least from1950 to

the near present) are not updated that frequently. This

particular feature is essential to further building a high-

resolution drought monitoring product for the Caribbean.

Second, GPCC V7 has the highest station density in our

study domain as compared to other datasets. As shown in

Fig. 2, for example, the CRU TS3.24 station density is

substantially lower in theCaribbean than in theGPCCV7.

Third, GPCC data are one of the most reliable pre-

cipitation datasets currently available (Dai and Zhao

2017). For instance, in comparison to scPDSI derived from

other precipitation products including the CRU TS3.24,

GPCC-data-based scPDSI estimates are more consistent

with other independent drought metrics, such as soil

moisture and runoff (Dai and Zhao 2017).

We used the global climate data suite WorldClim

(Hijmans et al. 2005; http://www.worldclim.org/) and the

Climate Hazards Group Infrared Precipitation with

Station Data (CHIRPS; Funk et al. 2015) as target fields

for downscaling and bias correcting the coarse-

resolution temperature and precipitation products de-

scribed above. WorldClim is a long-term (1950–2000)

high-resolution (;1 km2 over the equator) global cli-

matology of temperature (Tmax, Tmean, and Tmin) and

precipitation, along with other derived bioclimatic

variables. The dataset was developed by interpolating

long-term monthly climatologies of weather stations

using elevation, latitude, and longitude as predictors of

FIG. 1. Monthly precipitation climatology of the study domain (1950–2000) from theGPCCV7 at 0.58 resolution and the annual mean and

four focus regions of this work: (a) the Florida Peninsula, (b) Central America, (c) northern South America, and (d) the Caribbean.
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climate variables (Hijmans et al. 2005). WorldClim in-

cludes climate data from the GHCN, the Food and

Agriculture Organization of the United Nations (FAO),

the World Meteorological Organization (WMO), the

International Center for Tropical Agriculture (CIAT),

and other additional minor databases from Central and

South American countries (as well as others outside the

study region) (Hijmans et al. 2005). Despite the scarcity

of weather stations with high-quality climate data across

our study domain, WorldClim used a relatively dense

station network by incorporating climatological data

from various sources, as well as by selecting stations with

at least 10 years of monthly climate data during the

1950–2000 interval (Hijmans et al. 2005). For example,

we estimated that WorldClim used approximately 5000

weather stations1 (for both temperature and pre-

cipitation) in our study domain, mainly distributed over

northern South America. However, those stations are

not exempt from the problem of missing data; they

simply satisfy the minimum requirement of having at

least 10 years of climate data to be included in World-

Clim. In spite of these obvious limitations, WorldClim is

one of the very few high-resolution gridded climatol-

ogies currently available that make possible downscal-

ing coarse temperature and precipitation datasets in

regions with limited or missing continuous high-

resolution data.

Because WorldClim solely provides high-resolution

climatologies, we further used CHIRPS to correct

monthly biases in variances and means of GPCC V7.

This product spans from 1981 to the present, with a

native resolution of 0.058 (;6 km) in the Caribbean. It

integrates satellite imagery data with in situ weather

station data from 508S to 508N. As with reanalysis and

the GPCCmonitoring product, CHIRPS is updated on a

monthly basis with the purpose of drought monitoring

(Funk et al. 2015). The number of stations used by

CHIRPS to calibrate satellite precipitation estimates in

our study domain is currently about 540,2 although this

number was greater a decade or so ago. Most of the

stations currently in use are concentrated in a portion of

northern South America and the Florida Peninsula.

The available water holding capacity (AWC) data

required for computing the scPDSI were obtained from

the Global Gridded Surfaces of Selected Soil Charac-

teristics of the International Geosphere–Biosphere

Programme Data and Information Services (IGBP-

DIS), through the Oak Ridge National Laboratory

(ORNL; http://daac.ornl.gov/). This database provides

information of various derived soil surfaces, including

AWC, soil field capacity, and soil bulk density. It uses a

statistical bootstrapping method to generate those

FIG. 2. Number of stations used byGPCCV7 andCRUTS3.24 in

our study domain: (a) station density time series during the 1901–

2013 interval, (b) number of station of GPCC, and (c) CRUTS 3.24

in 2013.

1 See https://databasin.org/maps/new#datasets515a31dec689b4c

958ee491ff30fcce75.
2 See ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/

diagnostics/chirps-n-stations_byCountry/.
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surfaces from the FAO–United Nations Educational,

Scientific andCultural Organization (UNESCO)Digital

Soil Map of the World (Global Soil Data Task Group

2000). Although the native resolution of this product is

5 arc min, we preprocessed using a bilinear interpolation

routine to regrid the AWC data to a spatial resolution

of 4 km.

b. Methods

For the purpose of facilitating the analysis of scPDSI

trends and spatial variability, we divided the study area

into four smaller regions based on physiographical set-

tings (e.g., continentality vs insularity) and the total

annual precipitation amount: 1) the Florida Peninsula

(Fig. 1a), 2) Central America (Fig. 1b), 3) northern

South America (Fig. 1c), and 4) the Caribbean (Fig. 1d).

Previous studies have suggested dividing the Caribbean

into smaller regions based on climatic features such as

seasonality (e.g., Giannini et al. 2000; Jury et al. 2007).

We, however, examined the Caribbean as a single region

because our domain not only includes the islands of the

Caribbean, but also Central America and small portions

of South and North America. We therefore compare

hydroclimatic variations in the Caribbean along with

other regions in our domain over the 1950–2016 interval.

1) STATISTICAL DOWNSCALING AND BIAS

CORRECTION

As previously mentioned, climate data products used

in this work have native spatial resolutions ranging from

0.58 to 2.58 in latitude/longitude. At such scales, varia-

tions in drought related to local topography cannot be

resolved. In the Caribbean Sea, on islands like Hispa-

niola or Puerto Rico the spatial distribution and vari-

ances of precipitation are strongly conditioned by their

highly complex topography (e.g., Izzo et al. 2010), with

vertical gradients of up to 2700m over just 15 km of

horizontal distance. For reference, a 18 grid cell roughly

covers an area larger than Puerto Rico (;9000km2).

Accordingly, we applied statistical methods to down-

scale the coarse-resolution reanalysis, GPCC V7, and

BEST datasets, as well as to correct biases in means

and variances of downscaled fields. Furthermore, we

selected a target resolution of 4 km to downscale climate

data to make our product comparable with other high-

resolution drought monitoring products, such as the

WestWideDrought Tracker (https://wrcc.dri.edu/wwdt/

current.php?folder5spi3&region5ww), which is forced

with the Parameter-Elevation Relationships on In-

dependent Slopes Model (PRISM) gridded datasets

(Daly et al. 2002, 2008).

The downscaling method applied in this work is sim-

ilar to the ‘‘delta method’’ implemented by Mosier et al.

(2014). To downscale temperature, we first calculated

the anomalies of the BEST dataset at its native resolu-

tion (18 in latitude/longitude). Anomalies of maximum,

minimum, and mean monthly temperatures were cal-

culated with respect to the 1950–2000 climatology be-

cause the same period was used to construct the

WorldClim temperature products. These anomalies

were then bilinearly interpolated to match with the

target spatial resolution of 4 km. Finally, anomalies were

added to the WorldClim climatologies to generate

downscaled temperature products with a spatial reso-

lution of 4 km. It was necessary to regrid WorldClim to

match our target resolution of 4 km because its native

resolution is about 1 km at the equator (Hijmans et al.

2005). Since there are no high-resolution datasets of

temperature to correct biases in spatial variances in the

Caribbean (as there are for NorthAmerica), we used the

WorldClim temperature seasonality product to adjust

annual seasonality of downscaled temperature fields, so

they match the WorldClim annual cycle.

WorldClim temperature ‘‘seasonality’’ is the standard

deviation of monthly means with respect to the annual

average of temperature. We adjusted the annual cycle of

our downscaled temperature products following a similar

method as suggested by Leander and Buishand (2007):

T
corr

5T
raw

1

"
s(T

obs
)

s(T
raw

)

#
(T2T

raw
)1 (T

obs
2T

raw
), (1)

whereTcorr is the corrected temperature,Traw is the annual

mean temperature of uncorrected temperature data, and

Tobs is the annual mean temperature from observations,

which in this study is the mean from WorldClim clima-

tology. The term s(Tobs) is the standard deviation of

WorldClim climatology (temperature seasonality), while

s(Traw) is the annual standard deviation of the uncorrected

temperature (i.e., the standard deviation with respect to

the annual mean of every single year of the time series),

and T is the uncorrected monthly time series of tempera-

ture over a specific grid cell. We modified Eq. (1), so that

annual means and trends of the original downscaled data

are maintained [Eq. (2)]:

T
corr

5T
raw

1

"
s(T

obs
)

s(T
raw

)

#
(T2T

raw
) . (2)

If this step is done using just Eq. (1), we would be de-

trending downscaled fields by assigning a constant an-

nual mean on each grid cell time series, hence the

different formulation of Eq. (2).

Downscaling and bias-correcting of precipitation

required a more sophisticated statistical approach than
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for temperature. Bias correction using the WorldClim

coefficient of variation, as we did for temperature fields,

fails to show spatial variations in precipitation not

strictly related to local topography. For example, spatial

variations in precipitation associated with frontal sys-

tems (which are common in the northwestern Caribbean

during boreal winter) in areas with little topographic

variability (e.g., Florida) are not captured using this

method. Furthermore, we found annual variations in

precipitation to be much higher than those in tempera-

ture. If we adjust downscaled precipitation to have the

same coefficient of variation every year, this ‘‘correc-

tion’’ would affect the water balance of the scPDSI

function, and consequently we might obtain scPDSI

values that do not correspond to local conditions.

We applied a two-step statistical downscaling process

using the CHIRPS precipitation dataset to correct

monthly spatial variances and means of GPCC V7. As

the first step, we regridded the original GPCC dataset to

match the resolution of CHIRPS (0.058 or ;6 km). We

then corrected the variances and means of GPCC V7 so

that these statistics matched those of CHIRPS during

the overlapping period from January 1981 to December

2015. This step was done using a quantile mapping ap-

proach following the method proposed by Panofsky and

Brier (1968):

P
corr,i

5F21
obs[Fraw

(P
raw,i

)], for i5 1, 2, 3, . . . , 12, (3)

where Pcorr,i is the corrected precipitation for month i,

Praw,i is the uncorrected precipitation for month i, F21
obs

is the inverse cumulative distribution function (CDF) of

observations, which in this case is the CHIRPS dataset,

and Fraw is the corresponding CDF of uncorrected

precipitation.

The second step is similar to the procedurewe employed

for temperature fields. We calculated precipitation

anomalies as the fraction of each month with respect to its

1950–2000 climatology. Those anomalies were bilinearly

interpolated and then aggregated to the WorldClim cli-

matology to get a final downscaled product of 4km.Again,

it was necessary to regrid WorldClim precipitation clima-

tologies to our target resolution of 4km. Last, we adjusted

downscaled monthly mean values to match WorldClim’s

climatology from 1950 to 2000.

2) EVALUATION AND VALIDATION OF

DOWNSCALED PRODUCTS

Where available, we used station data from GHCN

versions 2 and 3 (V2 andV3), and homogenized weather

station data from the Dominican Republic (from Izzo

2011) to evaluate and validate downscaled climate fields.

We calculated root-mean-square errors (RMSEs)

between 58 stations and underlying grid cells for pre-

cipitation, and 20 stations for temperature. We also

computed Pearson correlation coefficients to evaluate

whether downscaled products capture interannual sta-

tion variability.

To evaluate the performance of WorldClim against

other similar products in the Caribbean region, we also

downscaled precipitation using the newly released

(;1km) data from the Climatologies at High Resolu-

tion for Earth’s Land Surface Areas (CHELSA) prod-

uct (Karger et al. 2016). The CHELSA suite uses a more

sophisticated statistical approach than WorldClim to

downscale climate fields from the European Centre for

Medium-Range Weather Forecasts (ECMWF) interim

reanalysis (ERA-Interim; Dee et al. 2011). CHELSA

applies an algorithm that includes orographic predictors

such as the wind effect, valley exposure, and the plane-

tary boundary layer for downscaling both precipitation

and temperature. It further corrects biases of ERA-

Interim products using GPCC and GHCN station da-

tasets (Karger et al. 2016).

As an additional test to evaluate the quality of down-

scaled products, we regridded GPCC V7 and BEST to

match our downscaled precipitation and temperature

products, respectively, using the ‘‘nearest neighbor’’

method to maintain their original spatial variations.

3) THE SELF-CALIBRATING PALMER DROUGHT

SEVERITY INDEX

The PDSI, in its various forms, is the most widely used

metric for drought monitoring in North America (Heim

2002; Dai et al. 2004; Dai 2011, 2013). The original PDSI

(which we term PDSI-o) consists of a water balance

model that uses precipitation and PET as moisture

supply and demand terms, respectively, integrated to a

simple two-layer soil model (Palmer 1965). This makes

the PDSI-o (and its variants) unique among drought

indicators in its capacity to account for soil properties

(i.e., AWC) to estimate drought severity. In contrast, the

standardized precipitation index (SPI; McKee et al.

1993) and the standardized precipitation evapotranspi-

ration index (SPEI; Vicente-Serrano et al. 2010) present

alternative drought metrics to the PDSI-o, but are in-

sensitive to underlying soil characteristics. Values of the

PDSI-o smaller than 20.5 or greater than 0.5 indicate

dry or wet conditions, respectively (Palmer 1965), while

absolute values greater than 4 indicate an extreme

event. Despite the success of the PDSI-o as a drought

metric, it has also been criticized for showing in-

consistent results across different climates (e.g., Alley

1984; Guttman et al. 1992; Wells et al. 2004).

Given the shortcomings of PDSI-o, we used the

scPDSI, which makes drought severities comparable
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across different climate zones by tuning the index to

local conditions (Wells et al. 2004). At its core, the

scPDSI Xi is calculated as

X
i
5 pX

i21
1 qZ

i
, (4)

whereXi is a given month of the index,Xi21 is the index

of the previous month, p and q are ‘‘duration factors’’

(which represent the importance of autocorrelation),

and Zi is the current moisture anomaly. As in Dai

(2011), we used consecutive negative and positive

moisture anomalies to calculate duration factors for dry

and wet periods, respectively. Further details on how

both the PDSI-o and the scPDSI are calculated are

provided by Palmer (1965), Alley (1984), Guttman et al.

(1992), and Wells et al. (2004).

Independent of the PDSI variant used, the index

‘‘calibration period’’ must be defined, which is the in-

terval used as a benchmark to establish the normal

hydroclimatic conditions for a specific location (Palmer

1965; Dai 2011; van der Schrier et al. 2013). Although

previous studies have suggested a 1950–80 interval as

the optimum calibration period for computing the

PDSI to capture the effect of anthropogenic climate

change on drought (e.g., Dai and Zhao 2017), we used a

1950–2000 calibration interval to be consistent with the

WorldClim climatology.

We arbitrarily set soil moisture initial conditions to

have 50% of total AWC in each layer to initialize the

calculations. Since the upper layer Ss has a fixed AWC

of one inch, its initial moisture content was set at 0.5 in.

(1 in. ’ 2.54 cm); moisture content in the lower layer Su
depends on the total AWC as Su 5 AWC 2 Ss (Palmer

1965). In addition, we calculated the index beginning in

January 1949 to minimize the influence of the initial

conditions because our analysis spans the period from

1950 to 2016.

4) POTENTIAL EVAPOTRANSPIRATION

In addition to using the self-calibrated version of the

PDSI, we followed recent recommendations for ‘‘best

practices’’ with the PDSI index (van der Schrier et al.

2011; Smerdon et al. 2015), using the Penman–Monteith

(PM) method (Penman 1948; Monteith 1965) for calcu-

lating evapotranspiration, rather than the Thornthwaite

equation (Thornthwaite 1948) used in PDSI-o. This

approach is considered more physically realistic and

more appropriate for evaluating the effects of climate

change on drought severity (van der Schrier et al. 2011;

Smerdon et al. 2015; Williams et al. 2015). Given the

limited long-term climate data available for the Carib-

bean, we applied a variant of the PM that requires fewer

climate fields for its computation [Eq. (5)] and is currently

used by the FAO (Allen et al. 1998). Using this method,

the PET is calculated as

PET5
0:408D(Rn2G)1 g

900

T1 273:16
U

2
(e

s
2 e

a
)

D1 g(11 0:34U
2
)

, (5)

where the quantities are defined as follows: PET is the

crop reference evapotranspiration (mmday21), Rn is

the net radiation (MJm22 day21), G is the soil heat flux

density (MJm22 day21), T is the average temperature at

2-m height (8C), U2 is the wind speed measured (or es-

timated from U10) at 2-m height (m s21), U10 is the wind

speed measured at 10-m height (m s21), es 2 ea is the

vapor pressure deficit for measurement at 2-m height

(kPa), D is the slope of the vapor pressure curve (kPa

8C21), g is the psychrometric constant (kPa 8C21), 900 is

the coefficient for the reference crop (kJ21 kgKday21),

and 0.34 is the wind coefficient for the reference crop

(sm21) (Allen et al. 1998). The concept behind this

method stands from modeling an idealized grass surface

with 0.12-m height, a constant water supply, and a soil

resistance of 70 sm21. It also assumes a surface albedo of

0.23 (Allen et al. 1998). Although previous studies have

shown a minimal impact on using either the PM or the

Thornthwaite PET estimates for computing the PDSI

(e.g., Dai 2011; van der Schrier et al. 2011) over the his-

torical period,we suggest that variables included in thePM

method, such as the vapor pressure deficit, might play a

critical role on drought severity in the Caribbean during

climate change (e.g., Williams et al. 2015).

With the method we used to calculate the PET, five cli-

mate variables are required: monthly averages of daily

maximum, mean, andminimum temperature (Tmax, Tmean,

and Tmin), wind speed, and cloud cover. We used down-

scaled and bias-corrected temperature fields, while the

other variables were bilinearly interpolated reanalysis

products to match with the target resolution of 4 km.

Monthly averages of saturation vapor pressure es were

estimated from vapor pressure:

e(T)5 0:6108 exp

�
17:27T

T1 237:3

�
, (6)

where e(T) is the vapor pressure (kPa) as a function of

the air temperature, and T is the air temperature in

degrees Celsius. To assess potential biases on saturation

vapor pressure resulting from the nonlinearity of Eq. (6),

we also calculated ea using dailyTmax and Tmin, and then it

was averaged to obtain monthly ea estimates. We found

minor differences on using both approaches, yielding a

mean difference ,0.002kPa month21. Equation (6) was

also applied to calculate the actual vapor pressure ea,

which requires the dewpoint temperature rather than the
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air temperature. As suggested by Allen et al. (1998), the

minimum temperature can be used to compute ea when

dewpoint temperature and other humidity data are not

available. Although there are reanalysis products for both

the relative and specific humidity, we derived ea using our

downscaled mean minimum daily temperature in place of

the dewpoint temperature because there is not a high-

resolution dataset to further correct biases in means and

variances of downscaled humidity fields from reanalysis.

We also used minimum temperature to be consistent with

the saturated vapor pressure, which was calculated using

our downscaled temperature products. In addition, un-

certainties are high for humidity reanalysis products be-

cause they are largely based on simulated data (Kalnay

et al. 1996; Williams et al. 2015). A similar approach was

applied byHarris et al. (2014) to construct a 0.58-resolution
vapor pressure dataset as part of the CRU TS3.10 climate

suite. A caveat of using this approach is that we are as-

suming the dewpoint temperature is never lower than the

minimum temperature, which is not always realistic.

However, this is mostly an issue for arid and semiarid re-

gions (Allen et al. 1998). Although in the Caribbean there

are few semiarid regions (e.g., southern Hispaniola and

northern South America), we found that the method

performs fairly well by qualitatively comparing our PET

dataset with the CRU PET product.

Net radiation was calculated from reanalysis cloud

cover (to derive sunshine hours) following Allen et al.

(1998). Although this product has been classified as a

category ‘‘C’’ variable, which indicates that it is derived

solely from the model without observations (Kalnay

et al. 1996), we found that it has a minimal impact on the

scPDSI (Fig. 3). Finally, previous studies have reported

major uncertainties in the reanalysis wind speed product

because of the limited availability of high-quality obser-

vations (e.g., Dai 2011). To partially address this issue, we

used the long-term wind speed monthly climatologies

rather than the entire dataset, as in van der Schrier et al.

(2013) with the CRU wind speed product. As with cloud

cover, we compared the scPDSI forced with wind speed

climatology, obtaining similar trends and variances of

that in the Dai (2011) scPDSI dataset (Fig. 3).

5) LONG-TERM TRENDS AND DROUGHT RANKING

We calculated long-term trends in the scPDSI using

the best-fit linear least squares method. Trends with

p values greater or equal to 0.05 at the 95% confidence

level were not considered in our analysis, although

they are also described in the results. We calculated

linear trends over the study area, as well as in each of the

regions we divided our domain to identify changes at

regional scales. Furthermore, given the strong autocor-

relation of the scPDSI, we also calculated trends of the

Palmer’s moisture anomaly index (Z index; Palmer

1965) to contrast them against scPDSI trends. The Z

index has very little (if any) autocorrelation and can

serve as benchmark to assess the significance of the

trends in the scPDSI.

To estimate the area where the recent 2013–16

drought was record breaking, we ranked droughts by

selecting the smallest monthly scPDSI values in each

grid cell time series. In our analysis, the lower the

ranking value the more severe the drought. That is, the

most severe drought will be ranked as number one,

while the wettest period of the same time series will

occupy the last position.

FIG. 3. Comparison between the coarse-resolution PDSI calculated using the NCEP–NCAR reanalysis data

(regridded to 18) and theDai PDSI dataset (Dai 2011) on few selected grids fromNorthAmerica, Central America,

northern SouthAmerica, and the Caribbean. The ‘‘reanalysis PDSI’’ was computed using theGPCCV7 dataset for

precipitation and reanalysis products of temperature, total cloud cover, and wind speed climatology.
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6) SEA SURFACE TEMPERATURE

To identify large-scale climate patterns associated with

Caribbean drought, we used the Extended Reconstructed

Sea Surface Temperature, version 4 (ERSST.v4), dataset

(Huang et al. 2015; Liu et al. 2015) to correlate sea sur-

face temperature anomalies (SSTAs) with the scPDSI

across the study domain. Correlations were done with

SSTA averaged over theNiño-3.4 region (58N–58S, 1708–
1208W) in the tropical Pacific and with the tropical North

Atlantic (08–208N, 608–208W) because these regions

have been linked to the natural variability of precipita-

tion in our study domain (e.g., Enfield and Alfaro 1999;

Giannini et al. 2000, 2001a,b; Taylor et al. 2002; Jury et al.

2007).We further correlated regionally averaged scPDSI

from our drought atlas with global SSTA to gain insights

into the linkages between drought and remote patterns

of SST variability. Since previous studies have shown

seasonal changes in correlations between precipitation

and SSTA from both tropical Pacific and North Atlantic

(Giannini et al. 2000, 2001a,b; Taylor et al. 2002; Jury

et al. 2007), we also conducted seasonal correlations us-

ing two seasons: 1) the early rainy season of May–July

(MJJ), and 2) the late rainy season of August–

October (ASO).

3. Results

a. Validation of downscaled products

Correlation coefficients between downscaled monthly

precipitation and GHCN station vary from 0.76 to 0.97,

with an average of 0.89 over the study domain (Fig. 4a).

The lowest correlations are found in the Caribbean and

western Central America, as well as over coastal stations

in northern South America (Fig. 4a). In terms of RMSE,

the lowest value is 27mm in the Maracaibo–Los Pozos

station in Venezuela, while the highest is 79mm in

Caucagua, Venezuela (Fig. 4b). Both RMSEs account

for less than 60% of the station standard deviation.

Furthermore, correlations between the GPCC V7 re-

gridded product and our downscaled precipitation

product (4 km) average over 0.92. Lower correlations

are found on grids over the Andes in northern South

America and Hispaniola (Fig. 5a).

FIG. 4. (a) Correlation coefficients and (b) RMSEs between our

downscaled precipitation product and GHCN station data. We

selected GHCN stations with at least 15 years with continuous data

during the 1950–2016 interval.

FIG. 5. (a) Correlation coefficients and (b) RMSEs between our

downscaled precipitation product and the GPCC V7 interpolated

to 4 km (using the nearest-neighbor method) during the 1950–2016

interval. The largest biases are observed over Central America and

the Andes in South America.
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Correlation coefficients and RMSE values between

our BEST-downscaled temperature fields (Tmax, Tmean,

and Tmin) and GHCN station data are similar to those of

precipitation (Fig. 6). The higher biases in mean tem-

perature are found over mountainous regions in Central

America (RMSE 5 1.088C), Hispaniola (RMSE 5
0.918C), and northern South America (RMSE 5
0.898C). The same pattern is also apparent in monthly

minimum and maximum temperature means, with

RMSE ranging from 0.798 to 1.128C. Similar correlations

and RMSE are found between our reanalysis-downscaled

temperature products and GHCN.

Downscaled BEST-based and reanalysis-based tem-

perature products are very similar despite their differing

spatial scales and underlying methodological assump-

tions (Fig. 6). Overall, correlations and RMSE are 0.88

and 0.408C, respectively, with the highest biases in

northern South America, where correlations are below

0.6. However, grid cells with correlations below 0.85

only represent 20% of the study domain. Downscaled

BEST products also correlate slightly better with some

GHCN stations, as compared to downscaled reanalysis

temperature products. For example, BEST mean

temperature has a higher correlation (r 5 0.85) than

reanalysis (r 5 0.78) with the Juan Santamaria Airport

station in Costa Rica.

The minor differences between BEST and reanalysis

temperatures are also noticeable in the potential

evapotranspiration. As shown in Fig. 7, both products

perform similarly over the Caribbean and Central

America. The largest biases are found, again, over

northern South America, especially in the Orinoco

River basin and the Andes (Fig. 7). Moreover, correla-

tions between the BEST-based PET and reanalysis-

based PET during the 1980–2016 interval (used as a

benchmark of the satellite era) are lower than those

calculated using the entire time series from 1950 to 2016

(Figs. 7c,d).

b. WorldClim versus CHELSA downscaled
precipitation

While WorldClim and CHELSA climatologies might

reflect somewhat different mean climate states because

of their differing temporal coverage (1950–2000 vs 1979–

2013, respectively), we assume that major features such

as rain shadows and regional spatial variations in

FIG. 6. Scatterplots of monthly mean temperatures of six GHCN stations and downscaled data from BEST (brown) and reanalysis

(cyan) data during the 1950–2016 interval.We selectedweather stations with at least 10 years withoutmissing data located in theBahamas,

Costa Rica (CR), Cuba, Dominican Republic (DR), Netherlands Antilles (AN), and Martinique (MQ, France). The values of both axes

differ in each panel because of differences in the average temperature among stations. Diagonal lines in each panel represent the 1:1

correlation line.
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precipitation are maintained over time. Overall, both

downscaled precipitation products show similar long-

term and spatial variances, as assessed using correlation

coefficients and RMSE (Fig. 8). Averaged total annual

precipitation differ in terms of their spatial variances,

with the WorldClim-downscaled precipitation showing

slightly higher contrast in rain shadows than with the

CHELSA product. These differences are more notice-

able in the Caribbean (particularly on Hispaniola) and

Central America (Fig. 8). However, in spite of these

differences, the averaged correlation between both

products is 0.94.

CHELSA and WorldClim scPDSI estimates also

show similar long-term trends and variations. Minor

differences, mainly in the timing of some droughts and

pluvials (i.e., the beginning and the end of dry and wet

intervals), are observed in areas of complex topography

in Central America and the Caribbean.

c. Major droughts and pluvials during the
1950–2016 interval

1) MAJOR DROUGHTS

The worst droughts during the 1950–2016 interval

(Fig. 9) were identified from the perspective of Carib-

bean islands (region in Fig. 1d). That is, we spatially

averaged scPDSI over the Caribbean region and then

selected the droughts using a scPDSI # 21.5 threshold,

with at least one year in duration. Because of this, major

droughts identified in the Caribbean might not be the

most extreme dry intervals in other regions such as

northern South America, the Florida Peninsula, or

FIG. 7. (a),(c) Correlation coefficients and (b),(d) RMSEs between PET calculated using BEST and NCEP–

NCAR reanalysis surface temperature products. Lower correlations were observed over northern South America,

while the highest RMSEs were also observed on the same region. Note that (a) and (b) show correlations and

RMSE, respectively, using the full time series (from 1950 to 2016), while (c) and (d) are the same metrics as

computed after 1980 to assess the skill of reanalysis for the satellite era.
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Central America (Fig. 9), and in some instances they

may not be correlated at all, as shown in Table 2.

We identified the first major drought in the Caribbean

between 1974 and 1977. It was one of the most wide-

spread and prolonged dry intervals in this region, and

affected 49% of the study domain (as calculated from

the percentage of grid cells with scPDSI#21) and 70%

of the Caribbean (Figs. 9 and 10). In terms of severity,

we calculated averaged scPDSI of 21.1 in the study

domain (and much lower values locally), 21.5 in the

Caribbean, 20.4 in northern South America, 20.6 in

Central America, and 21.4 in the Florida Peninsula

(Fig. 9). Localized wetter conditions occurred in the

Andean region of northern SouthAmerica, with scPDSI

values indicating a slight wet spell (;1.0).

The 1997/98 drought (Fig. 9) occurred during the

strong El Niño of 1997/98. Although dry conditions in-

tensified across the region in the summer of 1997, they

persisted until the summer and autumn of 1998. About

49% and 16% of the study area were affected by mild

(21$ scPDSI$21.9) and severe (23$ scPDSI$23.9)

drought conditions, respectively (Figs. 9 and 10), while at

least 50% of the Caribbean was under mild drought

(Fig. 10). Regions particularly affected by this event

were northern South America, with a regional scPDSI

average of 21.6, Central America (21.4 scPDSI), and

the Caribbean (20.8 scPDSI). In contrast to the 1974–77

dry interval, the Florida Peninsula experienced slightly

wetter conditions during the 1997/98 drought, with a

regional scPDSI of 0.8.

Between mid-2009 and late 2010, a severe and wide-

spread drought once again affected the domain, espe-

cially northeastern South America, the Caribbean

(mostly the Lesser Antilles), and portions of Central

America (Fig. 9). During this event, 68% of the study

area was under mild drought conditions, and 28% was

under severe drought (Fig. 10). Furthermore, over 85%

of northern South America as well as 99% of the Lesser

Antilles were severely affected by the drought (Fig. 10).

In contrast to other major droughts in the Caribbean,

this dry interval did not appreciably affect the Greater

Antilles, with approximately 59% of land area under

mild drought conditions. In terms of severity, regional

scPDSI averages vary across the study domain, from

20.9 scPDSI in the Caribbean to 23.0 in South Amer-

ica. For the rest of the regions, scPDSI averaged21.5 in

Central America and 0.4 in the Florida Peninsula.

More recently, between late 2013 and early 2016, the

Caribbean and most of the study domain further strug-

gled with a severe drought. As in the 1997/98 period,

part of this period occurred during a strong El Niño.
However, this drought was considerably more severe

and widespread, affecting 80% of the study area, and

almost 95% of the Caribbean with a mild drought

(Figs. 9 and 10). The drought peaked in 2015, and during

this year almost the entire Caribbean was experiencing

mild drought conditions, while 51% of the islands were

in severe drought (Fig. 10). In terms of regional aver-

ages, this drought reached scPDSI of 22.6 in the

Caribbean, 23.1 in northern South America, and 22.2

in Central America. In contrast, Florida Peninsula re-

ceived above normal precipitation, with a mean scPDSI

of 0.8 (a similar pattern to the 1997/98 drought). How-

ever, unlike the 1997/98 drought, the 2013–16 event af-

fected the southern portion of the Florida Peninsula

(Fig. 9), as well as northwestern Cuba.

2) MAJOR PLUVIALS

Major pluvials were selected by repeating the method

to choose major droughts in the Caribbean. We found

that some pluvials coincided with active hurricane sea-

sons in the North Atlantic, including those in 1979, 2008,

and 2012. A brief analysis of this result is provided in

section 4b. Furthermore, it was found that very wet con-

ditions (i.e., scPDSI$ 3) occur onmore localized scales as

compared to severe droughts (i.e., scPDSI#23), at least

in the Caribbean (Fig. 11).

FIG. 8. (a) Correlation coefficients and (b) RMSEs between

downscaled precipitation products using WorldClim and CHELSA.

Both downscaled products span the 1950–2016 interval.
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One of the most prominent pluvials occurred between

2012 and 2013 (Fig. 11), when 60% of our domain and

50% of the Caribbean were under wet conditions

(scPDSI $ 1) (Fig. 12). We calculated a regionally aver-

aged scPDSI of 1.4, which is considered slightly wet

(Palmer 1965). This wet interval was most pronounced in

northern South America, with a regionally averaged

scPDSI of 2.9. Furthermore, most of the Caribbean and

the Pacific coast of Central America experienced mild

wet conditions as well, with a mean scPDSI of 1.9 and 1.3,

respectively. In contrast, the Florida Peninsula and the

Caribbean coast of Central America were experiencing a

moderate drought, with an average scPDSI of 22.0.

Other major pluvials also occurred during 1958–62,

1977–81, and 2007–09, but they were not as widespread

as the 2012/13 wet period. In some cases, a ‘‘seesaw

pattern’’ between northern South America and the

Florida Peninsula is particularly pronounced, where

pluvials in one region are usually paired with dry con-

ditions in the other, and vice versa (Fig. 11). During the

wet periods in 1958–62, 1977–81, and 2007–09, 27%,

51%, and 59%, respectively, of the study domain was

under slightly wet conditions (Fig. 12).

d. Long-term trends

Linear trends in the scPDSI vary markedly across

the study area, even at local scales (Fig. 13). We calcu-

lated scPDSI trends during the 1950–2008 interval to

compare our results with trends previously reported by

FIG. 9. Major droughts registered in the study area from the perspective of the Caribbean between 1950 and 2016 of

at least one year in duration.

TABLE 2. Correlations between spatially averaged scPDSI time

series of the regions shown in Fig. 1. Boldface numbers indicate

a statistically significant correlation (p , 0.05) at the 95% level.

Central

America

Northern South

America Caribbean

Florida Peninsula 20.3 20.5 0.06

Central America — 0.7 0.46

Northern South

America

— — 0.4
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Dai (2011) in the Caribbean (Fig. 13a). In general, re-

sults reveal a statistically significant decline in the

scPDSI—indicating a drying trend—from 1950 to 2008

(p, 0.05),with anaverage trendof20.09 scPDSIdecade21.

It is important to mention, however, that this is the spa-

tially averaged trend across the study area, which means

that in specific locations drying trends are more pro-

nounced. Sectors of Central America (e.g., in Nicaragua

FIG. 11. As in Fig. 9, but for pluvials.

FIG. 10. Drought area index time series of the four focus regions used in this work, calculated based on the

percentage of grid cells with scPDSI # 21 (mild drought) and with scPDSI # 23 (severe drought).
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and Honduras), for example, have linear trends of

20.25 scPDSI decade21 (p , 0.05) (Fig. 13a).

We further calculated linear trends including the full

time interval of our drought product (1950–2016), which

depict a similar pattern as from 1950 to 2008 (Fig. 13b).

Differences were observed in the intensity of the trends,

but in general the spatial patterns were consistent. Sig-

nificant positive trends prevailed in northern South

America (108N, 758W) with scPDSI trends averaging

0.15 scPDSIdecade21 (p , 0.05). Positive trends were

also found in Puerto Rico (average change of 0.15

scPDSIdecade21) and the highlands ofHispaniola (average

change of 0.07 scPDSIdecade21) but they were not statis-

tically significant (p 5 0.12). A similar result was also ob-

served in the trendsof theZ index, although theyare slightly

lower than those in the scPDSI (60.04 units decade21).

REGIONAL TRENDS

Regional trends calculated using the full interval of

66 yr are shown in Fig. 14. As with our selection of the

worst dry and wet intervals, we spatially averaged the

scPDSI over the regions we divided our study domain.

Results reveal that scPDSI declined significantly in

three of the four regions, with the highest drying trend

in northern South America with 20.1 scPDSI decade21

(p , 0.05). The linear trend in northern South America

is closely followed by trends in the Caribbean

(20.09 scPDSIdecade21; p, 0.05) and Central America

(20.087 scPDSIdecade21; p , 0.05). Although results

also indicate a drying trend in the Florida Peninsula

(20.06 scPDSI decade21), this is not statistically

significant (p 5 0.15).

e. Sea surface temperature correlations

Seasonal correlations between SSTA and scPDSI time

series vary during seasonal cycles (Fig. 15). Negative

correlations associate above-normal SST with drought,

and positive correlations with wetter conditions. For ex-

ample, Fig. 15 shows the correlations between scPDSI in

the Caribbean with global SSTA during MJJ. A non-

statistically significant correlation is observed with the

tropical Pacific region during this season (r520.2), while

it is significant over the tropical North Atlantic (r5 0.5).

In contrast, during ASO (Fig. 15) both oceanic basins

are significantly correlated with scPDSI in the Caribbean

(r ’ 60.5). Furthermore, correlation patterns between

SSTAs and the Florida Peninsula scPDSI are quite the

opposite from those observed in the Caribbean, Central

America, and northern South America (Fig. 15). This re-

gion is significantly correlated with the tropical Pacific in

both seasons, while a nonstatistically significant correlation

is observed with the tropical North Atlantic (Fig. 15).

4. Discussion

a. Evaluation of downscaling and bias-correction
methods

Our drought atlas underscores the advantage of using

high-resolution climate products for calculating the

scPDSI in insular regions like the Caribbean. This is not

only because high-resolution datasets allow us to eval-

uate variations in drought at local scales, but also be-

cause the smallest insular states in the region are

resolved. For example, some of the Lesser Antilles do

not appear in the current drought datasets (e.g., Dai

et al. 2004; Dai 2011; Vicente Serrano et al. 2010; van der

Schrier et al. 2013), simply because those islands are

much smaller than a single grid cell of such products.

From our drought atlas, islands even smaller than

100 km2 (such as some of the British Virgin Islands) are

represented. Furthermore, we assessed the consistency

FIG. 12. As in Fig. 10, but for pluvials.
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of our drought product with two approaches. First, we

used statistical tools to compare the forcing climate

datasets—especially precipitation—with station data

before calculating the scPDSI. Even though correlation

coefficients may not fully capture the differences among

datasets, we ensured a more realistic comparison by

combining correlations with RMSE. Both approaches

indicate that our downscaled products are consistent

with station data in terms of trends and variability.

Second, we contrasted our drought atlas with reports

issued by local public institutions describing some of

their historical droughts. We compared, for example,

spatial variations of the recent 2013–16 drought in

Puerto Rico in our atlas against reports issued by the

Puerto Rican Department of Natural and Environ-

mental Resources (DRNA). In these reports, the evo-

lution of the drought was documented using various

indicators, including theUnited States DroughtMonitor

(USDM; http://droughtmonitor.unl.edu), and pre-

cipitation anomalies estimated from satellite products

(DRNA 2016). Although some biases were observed in

our drought atlas, especially in the western side of the

island, it captured the persistent drought in southern

Puerto Rico as described in those reports.

We found that the delta method implemented here is

appropriate in light of limitations in high-resolution

gridded climate products in our study region, and for

being computationally inexpensive. A key advantage of

this method is the relatively low volume of climate data

required for its implementation, as compared to more

sophisticated statistical methods like bias-corrected con-

structed analogs (BCCA; Maurer et al. 2010) or bias

correction and spatial disaggregation (BCSD;Wood et al.

2004). For example, while ideally it might be better to

downscale using BCCA (because of its sophisticated

statistical approach), high-resolution historical products

are required for the constructed analog (CA) step used in

this method. This issue in particular prevented us from

applying such amethod.While BCCAandBCSD require

high-resolution climate datasets, the delta method used

here only needs high-resolution climatologies of the

variables to downscale. This is especially important for

the Caribbean because there is no a single high-resolution

product that resolves for local topography from 1950 to

near-present. Although CHIRPS may be used to down-

scale precipitation using the BCSDmethod, it only spans

from 1981 to the present, and we required consistency in

our downscaling approach for both temperature and

precipitation going back to 1950.

b. Characteristics of droughts and pluvials

The eight extreme events we analyzed help us to char-

acterize some key features of dry and wet intervals in our

study area. For example, spatial variations in drought are

characterized by a seesaw pattern between northern South

America and the Florida Peninsula, where droughts in

northern South America are accompanied by wet periods

in Florida, and vice versa (e.g., Figs. 9 and 11). This pattern

is particularly apparent with droughts and pluvials during

ENSO events, and it is also observed when comparing the

drought area index in each region (Fig. 10). During the

1997/98, 2009/10, and 2013–16 droughts in northern South

America and theCaribbean,wetter conditions prevailed in

the Florida Peninsula, and in some cases in western Cuba

(Fig. 9). These findings are consistent with previous studies

(e.g., Schultz et al. 1998; Giannini et al. 2001a,b) in which

FIG. 13. Linear trends showing (a) the change of the scPDSI during

the 1950–2016 interval and (b) in 1950–2008. Brown colors represent

a drying trend, and cyan colors a wetting trend. In (a) and (b), the

hatching means a significant trend (p , 0.05) at the 95% level.
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warm phases of the ENSO have been associated with

drought in northern South America, and above-normal

precipitation in the Florida Peninsula. The wetter condi-

tions observed in Florida correlate with a higher intrusion

of frontal systems during the boreal winter when El Niño
peaks. In contrast, a persistent subsidence over northern

South America could be responsible for the drier condi-

tions observed during El Niño in this region (Giannini

et al. 2001a,b).

Some pluvials occurred during active hurricane sea-

sons in the North Atlantic. Although the scPDSI

smooths the influence of extreme precipitation events

like those associated with tropical cyclones, we exam-

ined some of the most intense hurricanes that affected

Hispaniola in 1979, 1998, and 2008. In some instances,

like after Hurricanes David (1979) and Georges (1998),

we found scPDSI changes of 1.6 and 1.8, respectively,

in a single month. Hispaniola was also affected by two

tropical cyclones in August 2008, including Hurricane

Gustav. Averaged scPDSI across the island changed

from 21.8 in July 2008 (mild drought conditions) to 2.9

in August (moderately wet), representing a change of

4.2 scPDSI in one month. Although tropical cyclones

last for a few days, they often bring substantial amounts

of precipitation (on the order of hundreds of millimeters

in few days) that eventually contribute to a major

change in the scPDSI, even in a short period of time. For

example, the greatest accumulated monthly pre-

cipitation in Barahona (Dominican Republic, during

1939–2008) is 945mm (Izzo 2011).3 This extreme event

occurred in October 1963 and coincided with the

landfall of major Hurricane Flora in southwestern His-

paniola. In fact, this amount is 7 times the average pre-

cipitation for October in this station (;160mm) and

virtually equal to its annual mean (;950mm). As esti-

mated from Roth (2008), the contribution of Flora to

this event was approximately 800mm, or roughly 85%of

total precipitation in this month. These results highlight

the role that tropical cyclones might play in ending

droughts or worsening pluvials at local scales in the

Caribbean. However, based on these findings we cannot

argue that pluvials in the Caribbean are solely caused by

the natural variability of tropical cyclones. Hence, this

warrants further research that might include dynamical

downscaling of landfalling hurricanes in the region to

provide insights into the possible interplay between

tropical cyclones and local topography in modulating

drought variability.

Our atlas is also consistent with previous studies

connecting SSTA to drought variability in the region

(e.g., Enfield and Alfaro 1999; Giannini et al. 2000,

2001a,b; Taylor et al. 2002; Jury et al. 2007). As shown in

Fig. 15, regional scPDSI time series are significantly

correlated with SSTA, especially in the tropical Pacific

and North Atlantic Oceans. However, correlation pat-

terns with indices from these basins vary across the study

area, and are even anticorrelated. For example, while

scPDSI in the Florida Peninsula is positively correlated

with above normal tropical Pacific SSTs, the correlations

are negative in Central America, northern South

America, and the Caribbean (Fig. 15). This means that

during El Niño events, wetter conditions are usually

observed in Florida and drought observed in the rest of

the domain. These findings are also consistent with the

seesaw pattern seen in the most extreme hydroclimatic

intervals, and highlight the influence of both the tropical

FIG. 14. Linear trends of spatially averaged scPDSI over the four key regions. Note the seesaw pattern between the

Florida Peninsula and northern South America.

3 Station data provided by the National Meteorological Office of

the Dominican Republic (ONAMET).
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Pacific and North Atlantic in modulating drought vari-

ability in our study area. Furthermore, correlations not

only vary across space but also through the seasonal

cycle. For example, scPDSI in the Caribbean is signifi-

cantly correlated with the tropical Pacific during early

boreal autumn (ASO), while there is no correlation in

boreal spring–summer (MJJ) (Fig. 15). In contrast, the

same region is positively correlated with the tropical

North Atlantic in both seasons, which means that above

normal temperature in this sector of the North Atlantic

ocean is usually associated with higher precipitation in

the Caribbean (e.g., Giannini et al. 2000, 2001a,b; Taylor

et al. 2002; Jury et al. 2007).

Correlations further vary at local scales across the

study domain, and even in the same region. Regionally

averaged scPDSI in Central America is, for example,

FIG. 15. Seasonal correlations between regionally averaged scPDSI time series in our study domain and global

SSTAs during the 1950–2016 interval. The hatched areas are statistically significant correlations at the 95% level.
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negatively correlated with the tropical Pacific (Fig. 15),

but this pattern is not equally strong across the region

(Fig. 16). The Pacific coast of Central America appears

to be more sensitive to variations in the Niño-3.4 re-

gion, while the Caribbean coast is not correlated at all

(p . 0.05), and indeed positive correlations are ob-

served in some grid cells (Fig. 16). Similarly, statisti-

cally significant correlations are observed in western

Cuba with the Niño-3.4 during MJJ, while the eastern

side of the island is negatively correlated. These pat-

terns suggest the role topography might have in mod-

ulating drought variation in our study domain by

modulating the spatial variation of precipitation.

c. The 2013–16 Caribbean drought

Results from this work indicate that during the 2013–

16 interval, the Caribbean faced the most severe and

widespread drought since 1950. This drought has

caused major water shortages in agriculture, municipal

consumption, and energy generation,4 mainly affecting

Hispaniola, Cuba, Puerto Rico, and Jamaica, as well as

the Lesser Antilles. We call this dry interval a ‘‘pan-

Caribbean drought’’ because virtually all Caribbean

islands were affected by it. As the Caribbean, Central

America, and northern South America also confronted

serious problems with water shortage in agriculture and

municipal consumption due to this drought.

The drought was record breaking in the summer of

2015,when 99%of theCaribbean, 98%of northern South

America, and 87% of Central America were under

drought conditions (Fig. 17). In terms of severity, it was

also record breaking in 17% of the domain in 2015. These

findings indicate that this event was not only the most

severe in terms of scPDSI values (below26 scPDSI in the

FIG. 16. Correlations between scPDSI and SSTAs over the Niño-3.4 region during the (a) MJJ and (b) ASO

periods. (c),(d) As in (a),(b), but with SSTAs over the tropical North Atlantic. The hatched areas are statistically

significant correlations at the 95% level.

4 See http://reliefweb.int/disaster/dr-2015-000091-hti.
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Caribbean and Central America) but it was also the most

widespread drought since at least 1950.

El Niño has been identified as the culprit of some

major droughts in the Caribbean, Central America, and

northern South America (e.g., Giannini et al. 2000,

2001a,b; Taylor et al. 2002; Jury et al. 2007), including

the 1997/98 and the recent 2013–16 event (Amador et al.

2016). However, as compared to the 1997/98 drought,

when even northwestern Cuba and Florida experienced

wetter conditions, the 2013–16 dry interval was ex-

tremely dry in both locations. This aridity not only ex-

tended across the entire island of Cuba, but also affected

portions of Florida that usually receive above normal

precipitation during El Niño (Giannini et al. 2001a,b).

Other particular difference between these ‘‘El Niño
droughts’’ was their duration. Whereas the 1997/98

event lasted a year, the 2013–16 drought extended for at

least three years, since it is still (at the time of writing)

ongoing in some locations of the study area.5

To assess the potential role of temperature anomalies

on this anomalous drought, we ranked annual PET

anomalies using our PET product. We found the highest

anomalies in both PET and temperatures in 2015, which

coincides with the driest year in the Caribbean during the

2013–16 drought (Fig. 18). We therefore argue that tem-

perature anomalies during the drought might have been a

major contributor to the severity of this event, in addition

to lower precipitation. Nevertheless, further studies are

required to fully evaluate the details of this picture.

5. Conclusions

We have documented the first high-resolution

scPDSI-based drought atlas for the Caribbean and

Central America, spanning 1950–2016. We argue that

high-resolution drought products are required for the

Caribbean region, not only because of its complex to-

pography and inherent insularity, but also because of its

unique exposure to the impacts of climate change across

these gradients. This atlas delivers critical information

to researchers and stakeholders by providing insight into

the historical backdrop of drought variability in the re-

gion. This is especially important for the Caribbean,

since many of its nations have been recognized as some

of the most vulnerable countries to severe droughts and

pluvials (Stephenson et al. 2014, 2016). We summarize

the main findings of this work as follows:

d Downscaling and bias-correction methods applied in

this work are robust in capturing spatial and temporal

FIG. 17. Annual drought rankings between 2013 and 2015.

Drought conditions in 2014 ranked as the most severe since 1950 in

a greater area than in 2015. However, in the Caribbean, 2015 ranks

as the driest year during the 2013–16 drought.

5 See http://rcc.cimh.edu.bb/spi-monitor-january-2017/.
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variations of the underlying climate data. For example,

correlations and root-mean-square errors indicate

that our downscaled products capture the interannual

variability of stations, as well as major droughts and

pluvials. Furthermore, comparing the scPDSI derived

from station-based precipitation and temperature re-

cords against our downscaled fields shows that these

two approaches yield consistent results.
d A seesaw pattern in droughts and pluvials is observed

between the Florida Peninsula and northern South

America. These findings are consistent with previous

studies (Giannini et al. 2000, 2001a,b; Taylor et al.

2002; Jury et al. 2007) but have not been documented

at such high spatial resolution until now. Likewise,

both the tropical Pacific and North Atlantic appear to

have the highest influence in modulating drought

variations in our study domain.
d Linear trends in the scPDSI vary substantially across

the study area, and even at local scales. For example,

in general, a significant drying trend is prevalent in the

Caribbean (20.09decade21, p , 0.05) whereas a wet-

ting trend is observed in the highlands ofHispaniola and

Puerto Rico (0.15decade21, p $ 0.05). Regional trends

in Central America, northern South America, and the

Florida Peninsula also show a predominant drying

trend. We also found that, even though trends in the

scPDSI across the study area are tied to the decline in

precipitation, the increasing trend in temperature might

also have a substantial effect.
d Finally, the 2013–16 Caribbean drought is the worst

multiyear period of aridity in theCaribbean andCentral

America since at least 1950. It was bothmore severe and

more extensive than any other event in our dataset. This

dry interval appears to be related not only to El Niño–
driven precipitation deficits, but also to temperature-

driven increases in PET. Furthermore, our results agree

with station-based reports from many meteorological

institutions across the Caribbean that recognized the

2013–16 drought as the worst event in decades, or even

in the last 100 years in some countries.

In conclusion, we consider this effort to be the first

step in building a high-resolution drought product for

the Caribbean and Central America that can be updated

regularly, and made available to the public for ongoing

monitoring and modeling efforts. Further applications

of this atlas could include quantifying potential pre-

dictability across multiple temporal or spatial scales,

targeting it for paleoclimate reconstructions, or applying

rigorous detection and attribution analysis to the his-

torical trends. Regardless, our results document—for

the first time, to our knowledge—that the 2013–16

drought was indeed the worst on record in terms of both

FIG. 18. As in Fig. 17, but for annual PET anomalies.
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its severity and spatial extent since at least 1950. Future

work could therefore help clarify the contribution of

anthropogenic warming to this extreme anomaly, as well

as help constrain future risks in a changing climate.
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