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Understanding how quickly physiological traits evolve is a topic of great inter-

est, particularly in the context of how organisms can adapt in response to

climate warming. Adjustment to novel thermal habitats may occur either

through behavioural adjustments, physiological adaptation or both. Here,

we test whether rates of evolution differ among physiological traits in the

cybotoids, a clade of tropical Anolis lizards distributed in markedly different

thermal environments on the Caribbean island of Hispaniola. We find that

cold tolerance evolves considerably faster than heat tolerance, a difference

that results because behavioural thermoregulation more effectively shields

these organisms from selection on upper than lower temperature tolerances.

Specifically, because lizards in very different environments behaviourally ther-

moregulate during the day to similar body temperatures, divergent selection

on body temperature and heat tolerance is precluded, whereas night-time

temperatures can only be partially buffered by behaviour, thereby exposing

organisms to selection on cold tolerance. We discuss how exposure to selec-

tion on physiology influences divergence among tropical organisms and its

implications for adaptive evolutionary response to climate warming.
1. Introduction
Rising temperatures present unique challenges for tropical ectotherms, which

already generally function near their upper thermal limits: even small temperature

increases can have disproportionately large negative consequences for these organ-

isms [1,2]. Studies assessing tropical ectotherms’ vulnerability to climate warming

have traditionally focused on predicting where warming will have the most pro-

nounced effects on organismal fitness by correlating physiological traits with

environmental data and using these relationships to infer where range shifts and

local extinctions will occur [3,4]. However, the evolutionary potential of populations

to respond to novel selective pressures imposed by rising temperatures is an equally

important and comparatively unexplored aspect of response to climate warming [5].

Behaviour and physiology determine how organisms interact with their

thermal environments [6]. Organisms that thermoregulate limit exposure to

suboptimal temperatures—a phenomenon commonly referred to as the ‘Bogert

effect’ [7,8]. Physiological traits that behavioural thermoregulation can shield

from selection should evolve less than traits that cannot be so easily buffered,

and thus are exposed to stronger selection. Because many environments are

more thermally complex in the day than at night [9,10], thermoregulation should
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Figure 1. Map showing altitudinal variation and the localities for each cybotoid population sampled in this study. The map inset shows the location of Hispaniola
with respect to the other islands in the Caribbean basin. Greyscale indicates elevation and range from dark (low) to light (high) elevation. Species are denoted in
different colours and shapes in the phylogeny generated based on Mahler et al. [16] (see Material and methods).
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be more effective at shielding diurnal organisms from selection

on upper than lower physiological limits and, consequently,

tolerance to cold should evolve faster than tolerance to heat.

In this study, we compare rates of physiological evolution

in the cybotoids, a tropical clade of Anolis lizards from the

Caribbean island of Hispaniola whose members differ exten-

sively in thermal habitat [11,12]. Previous work by Hertz &

Huey [13] found similar body temperatures and heat toler-

ance among three cybotoid species and provided ecological

data suggesting that they are good thermoregulators. Our

study expands on this work in terms of populations, species

and physiological traits examined. The cybotoid clade is

unique among Caribbean anoles because its species are found

from sea level to almost 3000 m [14]; as a result, the environ-

ments they experience pose different selective pressures and

provide the opportunity for behavioural and physiological

adaptation to different thermal extremes.

We first present a comparative analysis of three ecologically

important physiological traits—cold tolerance (CTmin), body

temperature (Tb), and heat tolerance (CTmax)—across thermal

environments. We then compare rates of evolution among

these traits using a likelihood-based approach and test whether

behavioural thermoregulation can limit exposure to extreme

temperatures using field estimates of basking site selection

and night-time temperatures. Finally, we discuss the role of

behaviour in setting the pace of physiological evolution in tro-

pical ectotherms and how behaviour influences adaptive

evolutionary potential in physiological traits.
2. Material and methods
(a) Study organisms and study sites
The cybotoid anoles are a clade of nine species from Hispaniola com-

monly found on trunks or near the ground [11]. Species occupy

nearly all available climatic environments from xeric semi-deserts

to high elevation mountains, which have been occupied indepen-

dently by two different lineages [12,15]. Our sampling was

conducted in June and July 2011 and focused on the seven cybotoids
found in the Dominican Republic (figure 1). The other two species

are Anolis breslini, which is restricted to northwestern Haiti and

is ecologically quite similar to Anolis whitemani [17], and Anolis
haetianus, which is found only in western Haiti and is probably

synonymous with Anolis cybotes [12]. Where possible, we sampled

several populations that, together, encompassed most of a species’

altitudinal range (figure 1 and table 1). Anolis cybotes is found

nearly island-wide; we sampled it at three elevations in each of the

two principal mountain chains, the Sierra de Baoruco (SB) and Cor-

dillera Central (CC). In the SB, we sampled the mid-elevation species,

Anolis strahmi and A. whitemani, and the high elevation species, Anolis
armouri. In the CC, we sampled the mid-elevation species, Anolis
marcanoi, and the high elevation species, Anolis shrevei.

We gathered climatic measurements for each locality by

extracting all temperature variables (bio 1—bio 11; electronic sup-

plementary material, table S1) from environmental layers available

in the WorldClim dataset (resolved to approx. 1 km2; [18]). These

variables summarize seasonal and annual temperature trends.

To account for collinearity among thermal variables, we reduced

data dimensionality using a principal components (PCs) analysis

on the correlation matrix.

(b) Measurement of physiological performance indices
We measured field body temperature, Tb, during one conti-

nuous 13 h period (06.00–19.00) at 13 localities from 20 June

to 31 July 2011. Owing to logistical constraints, one locality

(A. shrevei—1950 m) was sampled from 06.00 to 13.45, but results

for that population are consistent with those from other popu-

lations (table 1). Following established methods [19,20], we

walked slowly through each habitat and used a standard noose

to capture adult male lizards, which are more conspicuous and

easier to sample than females. For every lizard, we recorded

core temperature (Tb) to the nearest 0.18C using a thermocouple

(Type T, Copper-Constantan) inserted approximately 1 cm into

the cloaca and connected to a temperature logger (HH603A,

Omega). Each lizard was measured only once. Tb generally cor-

relates closely with the optimal performance temperature (Topt,

the temperature at which organisms maximally perform a func-

tion, for example running) in many diurnal lizards, including

tropical anoles [21].

For each lizard captured, we recorded the time, weather con-

ditions (sunny, mixed, or overcast skies) and ‘basking status’



Table 1. Locality name, species sampled, and altitude (m) are given. (Mean critical thermal minimum (CTmin), body temperature (Tb), midday body temperature
(midday Tb), and critical thermal maximum (CTmax) are given for each population. Units for physiological metrics are 8C+ 1 s.e.m. and sample size is given in
parentheses. For A. cybotes, the mountain chain corresponding to the sampling locality—Cordillera Central (CC) or the Sierra de Baoruco (SB)—is also given.)

species locality alt (m) CTmin (88888C) Tb (88888C) CTmax (88888C)

wild-measured

A. cybotes (SB) Los Patos 45 11.3+ 0.4 (16) 30.1+ 0.3 (45) 39.5+ 0.1 (20)

A. cybotes (CC) San Cristóbal 56 11.4+ 0.2 (16) 29.4+ 0.5 (53) 39.2+ 0.2 (16)

A. longitibialis Jaragua 105 12.8+ 0.2 (18) 28.9+ 0.2 (101) 38.5+ 0.3 (18)

A. whitemani Puerto Escondido 411 12.2+ 0.4 (15) 27.9+ 1.1 (17) 38.8+ 0.3 (15)

A. strahmi Camino Aguacate 454 11.3+ 0.5 (6) 26.3+ 0.7 (7) 39.2+ 0.2 (6)

A. marcanoi Ocoa 458 12.6+ 0.3 (9) — 38.2+ 0.3 (9)

A. cybotes (CC) Jarabacoa 690 10.7+ 0.2 (18) 29.0+ 0.6 (39) 40.3+ 0.2 (18)

A. cybotes (SB) Guayuyal 727 10.8+ 0.4 (15) 26.6+ 0.4 (53) 38.7+ 0.2 (15)

A. marcanoi La Horma 879 11.3+ 0.1 (16) 29.1+ 0.6 (48) 38.7+ 0.2 (16)

A. cybotes (CC) Constanza 1390 10.0+ 0.5 (11) 29.2+ 0.5 (10) 39.5+ 0.6 (11)

A. cybotes (SB) La Hoz 1395 8.7+ 0.4 (9) 28.6+ 0.9 (11) 38.9+ 0.2 (9)

A. shrevei Valle Nuevo—low 1950 9.6+ 0.6 (9) 28.0+ 1.0 (10) 39.9+ 0.3 (9)

A. armouri Loma de Toro—low 2020 8.2+ 0.6 (9) — 39.3+ 0.3 (9)

A. armouri Loma de Toro—high 2318 7.2+ 0.4 (12) 25.9+ 0.7 (21) —

A. shrevei Valle Nuevo—high 2450 6.2+ 0.3 (11) 27.4+ 1.0 (20) 40.4+ 0.3 (11)

cold acclimatized

A. cybotes Los Patos 45 10.6+ 0.3 (19) — —

A. armouri Loma de Toro—high 2318 7.2+ 0.3 (18) — —
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(basking in the full or filtered sun, perching in the shade under

sunny or mixed skies or in the shade under overcast skies) fol-

lowing Hertz [20]. For a statistical analysis of basking site

choice, we removed observations for lizards captured in overcast

conditions, because these lizards did not have the opportunity to

choose between perching in the sun or in the shade. We tested for

weather-dependent basking choice using a logistic regression

model such that individuals’ basking behaviour (perching in

shade ¼ 0, perching in sun ¼ 1) was evaluated as a function of

elevation, weather (sunny or mixed skies) and an elevation �
weather interaction. An effect of elevation alone would indicate

that certain basking behaviours are more likely to occur at differ-

ent elevations, whereas a significant interaction would indicate

that active lizards differ in how they exploit weather conditions

at different elevations.

We measured the critical thermal minimum (CTmin) and

maximum (CTmax), which refer to the low and high temperatures

at which an organism loses locomotor function; these are widely

used for measuring the tolerance limits of performance in

ectotherms [22,23]. CTmin and CTmax are estimated as the lower

and upper temperatures at which a lizard fails to right itself

when flipped onto its back [22]. After capture, we gave adult

male lizards a 24 h rest period in a large, insulated ice chest

(Coleman) in which temperature was maintained near 238C at

all sites. To measure core temperature during the tolerance exper-

iments, an Omega temperature probe (Type T, 36 gauge) was

placed approximately 1 cm into the cloaca of each lizard and

secured to the base of the tail using a small piece of surgical

tape, ensuring that tail movement was uncompromised. The

temperature probe was connected to a digital temperature

logger (HH147U, Omega). The lizard was placed into a perfo-

rated plastic container where it could move freely. After the

lizard attained ambient temperature, the container was moved

to an insulated icebox coated with a layer of crushed ice. Because
the rate of temperature change during a tolerance experiment can

alter an organism’s performance [24], we reduced body tempera-

ture at a constant rate of approximately 18C min21 for all lizards.

To conduct the experiment, we reduced body temperature to

148C, at which point we flipped the lizard onto its back using

a pair of blunt tweezers and stimulated it to flip itself back

over by gently probing the base of its tail and pressing its

thighs. If the lizard flipped over after 15 s, we then lowered

core temperature 0.58C and repeated this procedure, continuing

until a temperature was reached at which the lizard failed

to right itself in the allotted time. CTmin was recorded as the

temperature at which the righting response was lost.

Animals were given 24 h to rest in the ice chest before CTmax

trials. The method for estimating CTmax was similar to that of

CTmin except that a 100 W light bulb was suspended approxi-

mately 30 cm above the Tupperware container. We placed

lizards in the Tupperware container and increased their core temp-

erature at a rate of approximately 18C min21 by exposing them to

the heat source. We began flipping lizards when they began to cool

through panting (i.e. the ‘panting threshold’; [25]) following the

procedure described above, and recorded the temperature at

which the righting response was lost as CTmax.

Estimation of CTmin and CTmax is potentially confounded

by the rate of temperature change, body size and starting con-

ditions [24,26,27]. We performed linear regressions with mean

population CTmin and CTmax as the dependent variables against

the population means for rate of temperature change, initial

experimental temperature and body mass (see the electronic sup-

plementary material, table S2). We conducted separate analyses

for each pair of dependent and independent variables, and each

regression was weighted by the variance in CTmin or CTmax.

Because none of these models were statistically significant (see

the electronic supplementary material, table S3), we used raw

CTmin and CTmax values in subsequent analyses.
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We compared physiological traits to thermal habitat (three PC

variables, see Results) using population means and independent

contrasts. We calculated standardized independent contrasts

(scaled by the expected variance) for the weighted species means

of each physiological trait (CTmin, Tb and CTmax) and each of the

thermal habitat variables (PC I, PC II and PC III) using the pic func-

tion in the APE package [28,29] in R [30]. Although they are not

properties of the organisms, environmental traits may reflect

underlying ecological traits [31,32]. We used the time-calibrated,

majority rule consensus tree of Mahler et al. [16], with the topology

generated using Bayesian maximum clade credibility [33]. This

consensus tree contains 187 of approximately 375 recognized

species of anoles (all but 19 species of Caribbean anoles), including

all the species used in this study (figure 1). We used regression

through the origin to compare the contrasts for physiological

traits with the contrasts for thermal environment traits using the

lmorigin function in APE [29].

(c) Measuring rates of physiological trait evolution
To ensure comparability among traits, we used the fitContinuous
function in the GEIGER package [34] in R to fit three different

models of evolution to each physiological trait. These models

were: (i) Brownian Motion, a random walk; (ii) Ornstein–

Uhlenbeck, a random walk in which characters tend to return to a

single optimum; and (iii) Early Burst, in which the overall rate of

evolution exponentially slows through time [35–38]. We calculated

the Akaike information criterion corrected for small sample size

(AICc; [39]) for each model and compared the fits by examining

the Akaike weights [40].

We used Adams’ [41] method to evaluate whether the rate of

evolutionary change varied among physiological traits. This

method compares a model that allows rates to vary among

traits to one in which the rates are constrained to be equal

using a likelihood ratio test and AICc. To account for intraspeci-

fic measurement error, we incorporated the standard error of the

mean in our estimation of rates of evolution. We used the APE

library [42,43] and new code supplied by Adams [41] in R.

(d) Cold-acclimatization trials
Because of the large differences in CTmin we discovered among

populations (see Results), we conducted an experiment to

assess how short-term acclimatization influences variation in

this trait. In June 2013, we collected adult male lizards from

two populations differing greatly in thermal environment—

A. armouri (Loma de Toro, elevation ¼ 2318 m; n ¼ 18)

and A. cybotes (Los Patos, elevation ¼ 45 m; n ¼ 19). Kolbe et al.
[44] found that a two-week acclimatization at 22.58C was suffi-

cient to elicit a strong plastic response in CTmin in a lowland

population of Anolis cristatellus from Puerto Rico without indu-

cing severe thermal stress. We maintained lizards at 19.48C
(range ¼ 17.48C–21.98C) for three weeks and measured CTmin

following the procedure described above.

(e) Night-time temperature measurement
We measured night-time operative temperature (Te) in the same

two, thermally contrasting, localities. Te refers to an organism’s

equilibrium temperature in the absence of metabolic heating or

evaporative cooling (sensu [45]), which we estimated using replicas

made of electroformed copper. These models mimic the thermal

properties of a thermoconforming lizard (e.g. colour, shape

and size; [46]). We embedded iBUTTON data loggers (DS1921K

Maxim) into copper models shaped using a mould of

A. cybotes—this new generation of copper models permits auto-

mated temperature recording (for details of their construction,

see [47]). Methods for calibrating the copper models are given in

the electronic supplementary material. We launched these
models in Los Patos (12 on trees, 11 on rocks and 11 under rocks;

5–7 June 2013) and in Loma de Toro (11 each on trees, on rocks

and under rocks; 14–16 June 2013) with the devices set to auto-

matically record Te at 10 min intervals. We randomly selected

perches, orientation and height for model placement on trees

following Hertz [20]. We also recorded sleep site selection for

lizards at each of these localities during the experimental period.
3. Results
(a) Thermal habitat varies markedly across Hispaniola
For this study, we visited various localities in the Dominican

Republic that spanned more than 2400 m in altitude and a

variety of habitats ranging from lowland scrub to montane

pine forests. Not surprisingly, sites varied considerably in

temperature (figure 2). In the PC analysis of the WorldClim

thermal variables, we recovered three axes with eigenvalues

greater than 1 that together explained 99.6% of the variation

in the thermal data (see the electronic supplementary

material, tables S4 and S5). PC I (hereafter ‘Thermal PC I’)

explained 73.2% of the variation and loaded highly for

mean annual temperature, mean temperatures of the wettest

and driest quarters, maximum temperature of the warmest

month and minimum temperature of the coldest month. PC

II (14.2% variation explained; hereafter ‘Range PC II’)

loaded highly for daily and annual temperature ranges, and

PC III (12.2% variation explained; ‘Seasonality PC III’ axis)

loaded with variables related to thermal seasonality.
(b) Analyses of thermoregulation and physiology
In approximately 164 h of field observations, we collected Tb

from 435 lizards and basking site data from 381 lizards. The

extent of basking in the sun varied greatly at different elevations

(logistic interaction term; x1
2 ¼ 4.07, p ¼ 0.044); lizards at higher

elevation were more likely to bask, whereas those at lower

elevation sought shade. Neither CTmax nor Tb varied signifi-

cantly with any of the thermal habitat PC variables (table 2).

CTmin was positively correlated with Thermal PC I (r ¼ 0.934,

p , 0.001), which loaded heavily with mean annual tem-

perature, and this relationship remained significant after

phylogenetic correction (table 2).
(c) Evolutionary analyses of physiology
Brownian motion was the most strongly supported model for

all three traits (CTmin, Tb and CTmax)—Akaike weights were

more than 0.93 in all cases (see the electronic supplementary

material, table S6), allowing for a comparison of evolutionary

rates among traits. Likelihood ratio tests indicated that, over-

all, the three physiological traits evolved at different rates,

although the differences were just above the significance

threshold ( p ¼ 0.06) when intraspecific measurement error

was taken into account (table 3). Pairwise comparisons

showed that rates of evolution for CTmin were significantly

higher than for CTmax, even when intraspecific measure-

ment error was considered. However, differences in rates of

evolution between Tb and other traits were not significant

in the analysis incorporating intraspecific variation (table 3),

either because rates do not actually differ, or because high

variance in Tb obscures differences in rates of evolution.
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(d) Cold-acclimatization experiment
Mean CTmin was not significantly different between wild-

measured (mean¼ 11.38C) and cold-acclimatized A. cybotes
(mean ¼ 10.68C) (unpaired t-test: t¼ 1.53, p ¼ 0.136). Mean

CTmin remained the same (7.28C) between wild-measured and

cold-acclimatized A. armouri. CTmin was significantly higher in

A. cybotes than in A. armouri in both the wild-measured (unpaired

t-test: t ¼ 7.72, p , 0.001) and cold-acclimatized treatments

(t¼ 9.28, p , 0.001).
(e) Night-time temperature experiment
Night-time operative temperatures (Te) showed marked differ-

ences between high and low elevation (figure 3). At Los Patos

(low elevation), Te ranged from 24.68C to 29.88C, whereas at

Loma de Toro Te (high elevation), it ranged from 10.98C to

18.18C. Te was on average, though not always, somewhat

higher under rocks than on top of rocks or on trees (figure 3;

electronic supplementary material, figure S1), particularly

early in the evening. All lizards at Los Patos were observed

sleeping on vegetation (43 observations), whereas lizards at

Loma de Toro were observed sleeping on vegetation

(14 out of 30) and underneath rocks (16 out of 30) in roughly

equal numbers (test for differences in site selection among

populations: x1
2 ¼ 26.3, p , 0.001).
4. Discussion
(a) Thermoregulatory behaviour influences the rate of

physiological evolution
The question of how behaviour influences patterns of physio-

logical evolution dates back to the middle of the last century

[7,49] and has received renewed interest in light of concern

about how ectothermic organisms can respond to climate

warming [2,50]. We studied a clade of lizards whose species

vary markedly in thermal environment from hot semi-deserts

to cold montane environments. Despite occurring in envi-

ronments that differ by as much as 158C in mean annual

temperature, field body temperature and heat tolerance

were remarkably similar among populations, indicating that

behavioural thermoregulation can be extraordinarily effective

in limiting exposure to excessively hot or cold temperatures

(i.e. the ‘Bogert effect’; [8]). Our behavioural analysis demon-

strates that lowland lizards were more likely to retreat to the

shade under sunny conditions, whereas upland lizards were

more likely to bask when the sun was out, a result in agree-

ment with previous work on three of these species [13]. Our

results are particularly striking given that other anole species

exhibit markedly different body temperatures, even when

they occur in sympatry [51–54], but see [55,56].

Given the ability of cybotoids to thermoregulate to

approximately the same temperature throughout its range,

it is not surprising that CTmax also shows very little inter-

specific variation. However, these lizards have a much

more limited ability to thermoregulate at night, particularly

at high elevation, where operative temperatures measured

on all types of sleep sites were so low that they would inca-

pacitate approximately 80% of lowland lizards (figure 3;

electronic supplementary material, figure S1). In the absence

of thermal refuges, populations have no option but to adapt

physiologically. Indeed, we found that none of the lizards

from high elevation experienced night-time temperatures

lower than their CTmin (figure 3).

An alternative explanation for this finding is that dif-

ferences in CTmin represent non-genetic effects of living in

different environments. Previous studies suggest that adaptive

plasticity is unlikely to account for physiological differences

among populations [57]: our data support this view, as cold tol-

erance exhibits little acclimatization, even less so than in other

anoles [44], which suggests that there is probably a genetic

basis for the observed variation in CTmin.

The inability of thermoregulation to buffer selection on

physiology during the night is an explanation for the fast rate

of CTmin evolution in this clade (table 3; [8]). The relative stasis

in CTmax documented here aligns with results from recent

meta-analyses showing that there is less variation in heat toler-

ance than in cold tolerance in several ectotherm clades [58,59]. In

short, behavioural thermoregulation allows cybotoid species to

maintain similarly warm body temperatures during the day, but

not during the night, forcing species in montane environments

on Hispaniola to adapt to lower temperatures.
(b) What limits heat tolerance evolution?
Behavioural thermoregulation can help explain why CTmax is

less variable than CTmin in the cybotoids, but not why the

response to different environmental conditions involved

behavioural, rather than physiological, change. Given that



Table 2. Results from linear regressions assessing the relationship between physiological traits (critical thermal minimum, CTmin; mean body temperature, Tb,
and critical thermal maximum, CTmax) and thermal environment (PC I/mean annual temperature, PC II/temperature range and PC III/temperature seasonality)
using population means (a) and independent contrasts of species means (b). (Degrees of freedom are given in parentheses. Correlations among contrasts were
measured using the cor.table function in picante [48] in R.)

(a) populations (b) contrasts

reg. coeff. Pearson’s r p reg. coeff. Pearson’s r p

CTmin (13,5)

PC I/mean annual temperature 1.87 0.934 ,0.001 1.56 0.973 0.001

PC II/temperature range 20.20 0.022 0.755 0.05 0.032 0.951

PC III/seasonality 0.46 0.140 0.503 0.38 0.132 0.790

Tb (11,5)

PC I/mean annual temperature 0.52 0.363 0.142 0.78 0.637 0.143

PC II/temperature range 20.35 20.296 0.341 20.48 20.421 0.460

PC III/seasonality 0.68 0.479 0.054 20.73 20.381 0.464

CTmax (12,5)

PC I/mean annual temperature 20.29 20.618 0.110 20.24 0.186 0.204

PC II/temperature range 20.16 20.228 0.300 0.13 0.881 0.672

PC III/seasonality 0.13 0.193 0.524 0.03 0.865 0.957

Table 3. Comparison of evolutionary rates for CTmin, Tb, and CTmax. (a) The full analysis of evoluationary rates (s2) incorporating covariation among all three
traits. One test accounted for intraspecific measurement error (corrected), whereas the other did not (uncorrected). AICC scores for a model that allows rates to
vary (observed) among traits and a model that constrains rates of evolution to be equal among traits are given (constrained), and likelihood ratio test results
are also given. (b) Likelihood ratio tests for pairwise comparisons of evolutionary rates among traits. As above, the results for models that incorporate
intraspecific measurement error (corrected) and for models that do not (uncorrected) are presented.

trait s2 uncorrected corrected

(a) full analysis

CTmin 10.60 AICC (OBS) ¼ 167.3 AICC (OBS) ¼ 171.7

Tb 6.36 AICC (CONS) ¼ 175.8 AICC (CONS) ¼ 173.2

CTmax 0.78 LRTd.f. ¼ 2 ¼ 12.56, p ¼ 0.002 LRTd.f. ¼ 2 ¼ 5.57, p ¼ 0.06

comparison uncorrected LRTd.f. 5 1; p corrected LRTd.f. 5 1; p

(b) pairwise analysis

CTmin versus CTmax 12.40; ,0.001 7.85; 0.005

CTmin versus Tb 0.87; 0.350 0.32; 0.574

CTmax versus Tb 6.86; 0.009 24.70; 1.00
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time spent thermoregulating imposes a cost with regards to

other activities such as foraging, predator avoidance and

reproduction [19,60,61], it is unclear why selection should

favour the maintenance of high body temperatures in mon-

tane habitats, instead of physiological adaptation to lower

temperatures. One possibility is that behavioural modifi-

cations are easier to evolve than changes in physiological

tolerances [62,63]. Given that a myriad of physiological pro-

cesses (e.g. locomotion, digestion, and growth) are sensitive

to temperature, the evolution of physiological tolerances

may necessitate the concerted evolution of many genes (dis-

cussed in [64,65]). By contrast, shifts in basking frequency

change seasonally within populations, and so behavioural

shifts at different elevations may not require substantial
evolutionary change. Moreover, even if evolutionary shifts

in behaviour are required, such changes may require fewer

genetic changes than shifts in physiology [36].

This ‘evolution along lines of least genetic resistance’ (sensu
[66]) explanation suggests that there is no inherent advantage

to warmer body temperatures, but an alternative explanation

for the lack of evolutionary variability in CTmax revolves

around the fitness benefits of high temperatures. Specifically,

selection may favour the maintenance of high body tempera-

tures in cold environments because rates of biochemical

reactions increase with optimal temperature [65,67,68]. Indeed,

warm-adapted ectotherms generally experience higher levels

of physiological performance than cold-adapted organisms

[69,70]. However, if this ‘hotter is better’ hypothesis is true, it
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Figure 3. (a) Box plots showing the variation in operative temperatures during 1 h time blocks. Each time block summarizes temperatures collected over three
consecutive nights in June 2013 at low elevation (45 m) and high elevation (2318 m). Colour denotes the type of perch where the temperature was measured as
follows: on a tree, white; on top of a rock, light grey; underneath a rock, dark grey. (b) CTmin measured in individuals of A. cybotes (left) and A. armouri (right) from
the same localities in part (a) are given.
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still fails to address why low elevation populations have not

evolved even higher heat tolerances.

(c) Impacts of climate change
Climate warming will probably have different effects on

cybotoids from lowland and upland habitats. Warming tempera-

tures threaten to make current ranges thermally inhospitable for

many cool-adapted montane ectotherms, which may force their

ranges upwards [4,71]. By contrast, it is likely that upland cybo-

toids will benefit, at least in the short term, from climate

warming. As the climate warms, environmental temperatures

will more often approximate lizards’ preferred temperatures,

and thus the time lizards need to spend thermoregulating

should decrease and the number of hours available for other

activities should increase. By contrast, higher temperatures

may allow species from lower elevations to migrate upwards

leading to negative interspecific interactions [2].

The challenge facing lowland cybotoids will be to avoid

stressfully hot temperatures as habitats continue to warm.

Many tropical lizards, particularly those near sea level, are

already frequently experiencing temperatures exceeding their

preferred ranges [2,3]. As warming continues, lizards in such

lowland populations will eventually be unable to maintain

temperatures within their preferred range for long enough

periods to survive. At that point, lowland populations can

only avoid local extinction by shifting their physiology to

adapt to these higher environmental temperatures.

Evolutionary stasis in CTmax may suggest a limited ability

to evolve and, thus, a heightened vulnerability to environ-

mental warming. Some studies on Drosophila support the

idea that heat tolerance evolution is genetically constrained,

as the amount of genetic diversity for heat tolerance is limited

compared with that for cold tolerance [72–74]. The
observation that CTmin evolves readily in cybotoids and in

other ectotherms [75,76] would tend to support this hypoth-

esis. Nonetheless, it is hard to construe why diverse

physiological systems would be constrained from evolving

upper, but not lower tolerances. In fact, experiments on Dro-
sophila [77] and salmon [78] have demonstrated that heat

tolerance can increase in response to selection, although there

appears to be an upper ceiling on how high heat tolerance

can evolve [79]; no similar experiments have ever been con-

ducted on vertebrates. Moreover, although cybotoid anoles

show relatively little variation in heat sensitivity, some other

anole clades have diversified extensively while adapting to

different thermal environments [54]. Looking more broadly,

other lizard species possess heat tolerances that approach

508C (reviewed in [58,59]), suggesting that if genetic constraints

exist in lizards, they are phylogenetically localized. Finding an

explanation for variation among clades in physiological diver-

sity could aid in assessing ectotherms’ vulnerability to climate

warming, but it is a challenge that will require integration of

physiological, behavioural, and evolutionary approaches.

All work was conducted in accordance with IACUC protocols 26-11
at Harvard University.
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