St. Norbert College Digital Commons @ St. Norbert College

Faculty Creative and Scholarly Works

4-20-2016

Mitogenomic sequences support a north-south subspecies subdivision within Solenodon paradoxus

Adam L. Brandt Kirill Grigorev

Yashira M. Afanador-Hernández

Liz A. Paullino

William J. Murphy

See next page for additional authors

Follow this and additional works at: https://digitalcommons.snc.edu/faculty_staff_works

Authors

Adam L. Brandt, Kirill Grigorev, Yashira M. Afanador-Hernández, Liz A. Paullino, William J. Murphy, Adrell Núñez, Aleksey Komissarov, Jessica R. Brandt, Pavel Dobrynin, David Hernández-Martich, Roberto María, Stephen J. O'Brien, Luis E. Rodríguez, Juan C. Martínez-Cruzado, Taras K. Oleksyk, and Alfred L. Roca

1 2	Mitochondrial DNA, Original Article
3	
4	Title: Mitogenomic sequences support a north-south subspecies subdivision within
5	Solenodon paradoxus
6	
7	
8	Authors: Adam L. Brandt ^{1,2+} , Kirill Grigorev ⁴⁺ , Yashira M. Afanador-Hernández ⁴ , Liz A.
9	Paulino ⁵ , William J. Murphy ⁶ , Adrell Núñez ⁷ , Aleksey Komissarov ⁸ , Jessica R. Brandt ¹ ,
10	Pavel Dobrynin ⁸ , J. David Hernández-Martich ⁹ , Roberto María ⁷ , Stephen J. O'Brien ^{8,10} ,
11	Luis E. Rodríguez ⁵ , Juan C. Martínez-Cruzado ⁴ , Taras K. Oleksyk ^{4*} and Alfred L.
12	Roca ^{1,2,3*}
13	
14	⁺ Equal contributors
15	*Corresponding authors: <u>roca@illinois.edu; taras.oleksyk@upr.edu</u>
16	
17	
18	Affiliations: ¹ Department of Animal Sciences, ² Illinois Natural History Survey and ³ Carl
19	R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign,
20	Urbana, IL 61801; ⁴ Department of Biology, University of Puerto Rico at Mayagüez,
21	Mayagüez, Puerto Rico 00681; ⁵ Instituto Tecnológico de Santo Domingo (INTEC), Santo
22	Domingo, Dominican Republic; ⁶ Department of Veterinary Integrative Biosciences,
23	Texas A&M University, College Station, TX 77843; ⁷ Department of Conservation and
24 25	Science, Parque Zoológico Nacional (ZOODOM), Santo Domingo, Dominican Republic;
25	⁸ Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State
26 27	University, 199004 St. Petersburg, Russia; ⁹ Instituto de Investigaciones Botanicas y
27 28	Zoologicas, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic; ¹⁰ Oceanographic Center, Nova Southeastern University, Fort Lauderdale,
20 29	Florida 33004
30	10100
31	
32	Corresponding address:
33	Alfred L. Roca, Ph.D.
34	Department of Animal Sciences
35	University of Illinois at Urbana-Champaign
36	432 ASL, 1207 West Gregory Drive
37	Urbana, Illinois 61801
38	Email: <u>roca@illinois.edu</u>
39	Mobile phone: 240-422-2493
40	Office phone: 217-244-8853

41 Department fax: 217-333-8286

42 Abstract

43 Solenodons are insectivores found only in Hispaniola and Cuba, with a Mesozoic 44 divergence date versus extant mainland mammals. Solenodons are the oldest lineage of 45 living eutherian mammal for which a mitogenome sequence has not been reported. We 46 determined complete mitogenome sequences for six Hispaniolan solenodons (Solenodon 47 paradoxus) using next generation sequencing. The solenodon mitogenomes were 16,454-48 16,457 bp long and carried the expected repertoire of genes. A mitogenomic phylogeny 49 confirmed the basal position of solenodons relative to shrews and moles, with solenodon 50 mitogenomes estimated to have diverged from those of other mammals ca. 78 Mya. 51 Control region sequences of solenodons from the northern (n=3) and southern (n=5)52 Dominican Republic grouped separately in a network, with $F_{ST} = 0.72$ (p=0.036) between north and south. This regional genetic divergence supports previous morphological and 53 54 genetic reports recognizing northern (S. p. paradoxus) and southern (S. p. woodi) 55 subspecies in need of separate conservation plans. 56 57 58 **Key words** [3-6]: conservation, Dominican Republic, evolutionarily significant units,

59 Solenodon paradoxus, subspecies, taxonomy

60 Introduction

61

62	Solenodons are fossorial insectivores that live only in the islands of Cuba and
63	Hispaniola (Ottenwalder 1985). The two species of solenodon are among the few native
64	non-volant mammals to survive human colonization of the West Indies (MacPhee et al.
65	1999; Ottenwalder 2001). The geographic range of the Cuban solenodon (Solenodon
66	cubanus Peters, 1861) is currently limited to eastern Cuba (Ottenwalder 1985). The
67	Hispaniolan solenodon (S. paradoxus Brandt, 1833) lives only in the island of
68	Hispaniola, with surviving range primarily within the Dominican Republic (Ottenwalder
69	1985), but with a small remnant population in Haiti (Turvey et al. 2008). Solenodons
70	inhabit the forests of Cuba and Hispaniola to elevations of 2000 m or more (Eisenberg
71	and Gozalez Gotera 1985; Ottenwalder 1985) and shelter in caves, crevices, logs, and
72	extensive tunnel networks at a depth of >20 cm (Eisenberg and Gozalez Gotera 1985;
73	Ottenwalder 1985). They subsist on small vertebrates and large invertebrates (Eisenberg
74	and Gozalez Gotera 1985; Ottenwalder 1985). Solenodons are one of the few mammals
75	that are venomous (Turvey 2010; Folinsbee 2013), and some have argued that they may
76	use a form of echolocation (Eisenberg and Gould 1966).
77	Among hundreds of lineages of recent West Indian tetrapods (mammals, birds,
78	reptiles and amphibians), Solenodon is the only lineage for which strong evidence
79	supports Mesozoic divergence when compared to the closest related living mainland taxa
80	(Roca et al. 2004; Meredith et al. 2011). Most other lineages in the West Indies are
81	known to have diverged from mainland forms in the Cenozoic (Hedges 1996; Woods and
82	Sergile 2001; Roca et al. 2004). In a previous study using 16 nuclear and 3 mitochondrial

83	genes, solenodons proved to be the earliest branching lineage within Eulipotyphla, or true
84	insectivores (Roca et al. 2004). Contrary to the expectations of some previous
85	morphological studies, solenodons were basal to soricids (shrews), talpids (moles) and
86	erinaceids (hedgehogs and gymnures) (McDowell 1958; Butler 1988; MacPhee and
87	Novacek 1993; McKenna and Bell 1997). The divergence date for solenodons from other
88	eulipotyphlan insectivores has been estimated as 76 million years ago (Mya; 95%
89	credibility interval [CI] of 72-81 Mya), older than some interordinal splits among
90	mammals (Meredith et al. 2011). This point estimate is before the Cretaceous/Tertiary
91	boundary, with the 95% CI for the solenodon divergence falling entirely within the
92	Mesozoic Era (Hedges 1996; Iturralde-Vinent and MacPhee 1999; Roca et al. 2004;
93	Meredith et al. 2011).
94	Despite their unique status among mammals (Roca et al. 2004; Wible 2008), until
95	recently only a few studies had published on their DNA, these involving one or a few
96	specimens (Stanhope et al. 1998; Emerson et al. 1999; Allard et al. 2001; Waddell and
97	Shelley 2003; Roca et al. 2004). Likewise, solenodons are the only major mammalian
98	lineage for which the full length of the mitochondrial DNA genome has not been
99	sequenced. Both solenodon species are listed as endangered and declining in population
100	by the IUCN Red List of threatened species (IUCN 2013). Solenodons are currently
101	threatened with extinction due to deforestation, increasing human populations, predation
102	by introduced carnivores, and possibly by competition from introduced rodents
103	(Ottenwalder 1985; Ottenwalder 2001; Borroto-Paez 2009; IUCN 2013; Turvey et al.
104	2014). A better understanding of the genetics of solenodons would assist development of
105	conservation plans. In particular, regional differences in morphology have been reported

106	in the Hispaniolan solenodon, with specimens from the north of the island (designated as
107	subspecies Solenodon paradoxus paradoxus) larger in size than specimens from the south
108	(designated S. p. woodi) (Ottenwalder 2001). We therefore collected Hispaniolan
109	solenodons from the southern Dominican Republic, and compared their sequences to
110	those of northern solenodons. We also generated the first full mitogenomic sequences
111	reported from both subspecies of Hispaniolan solenodon, filling this gap among
112	mammals, and determining whether the mitogenomic analysis would support a Mesozoic
113	divergence date for the lineage.
114	
115	Materials and Methods
116	
117	Sample collection and DNA extraction
118	
119	This study was conducted with the review and approval of the Institutional
120	Animal Care and Use Committee of the University of Puerto Rico. Before the study was
121	conducted, required permits were obtained, including collection and export permits
122	issued by the government of the Dominican Republic, and ESA/CITES and APHIS
123	import permits issued by the US government. For sample Spa-1, collection and DNA
124	extraction details have been reported previously (Roca et al. 2004), all other sequences
125	were from samples newly collected in the wild across various localities in the southern
126	Dominican Republic (Table 1, Figure 1). Samples were obtained in accordance with a
127	permit issued by the Dominican Republic Ministry of the Environment and Natural
128	Resources. As a general protocol, the individuals were captured, weighed, measured,

129	sexed and immediately released at the capture site, all within ten minutes of capture. A
130	general visual assessment was performed looking for any sign of possible disease. As a
131	general rule, the blood volume collected did not exceed more than 1% of body weight of
132	animals with no visible sign of distress or disease. Aseptic technique was performed
133	previous to blood draw using a povidone-iodine solution, followed by isopropyl alcohol.
134	Whole blood was collected from the <i>vena jugularis</i> using a 3 mL syringe with a 23G x 1"
135	needle. Once collected, the samples were transferred to a micro-blood collection tube
136	with anticoagulant (BD Microtainer, 1.0 mg K2EDTA for 250-500 μ L volume). The
137	specimens were then labeled on their tail with a marker to avoid recapturing. Geographic
138	coordinates were recorded for every location where a specimen was captured (Table 1).
139	Tubes were refrigerated until DNA could be extracted from samples using the DNeasy
140	Blood & Tissue kit (Qiagen, Hilden, Germany).
140 141	Blood & Tissue kit (Qiagen, Hilden, Germany).
	Mitogenome sequence generation, assembly and annotation
141	
141 142	Mitogenome sequence generation, assembly and annotation
141 142 143	Mitogenome sequence generation, assembly and annotation For each of six individuals of <i>S. paradoxus</i> , a mitogenome was assembled
141 142 143 144	Mitogenome sequence generation, assembly and annotation For each of six individuals of <i>S. paradoxus</i> , a mitogenome was assembled independently from Illumina WGS reads. From northern solenodon (<i>S. p. paradoxus</i>)
141 142 143 144 145	Mitogenome sequence generation, assembly and annotation For each of six individuals of <i>S. paradoxus</i> , a mitogenome was assembled independently from Illumina WGS reads. From northern solenodon (<i>S. p. paradoxus</i>) Spa-1, a total of 52,358,830 paired-end reads were generated, equating to approximately
141 142 143 144 145 146	 Mitogenome sequence generation, assembly and annotation For each of six individuals of <i>S. paradoxus</i>, a mitogenome was assembled independently from Illumina WGS reads. From northern solenodon (<i>S. p. paradoxus</i>) Spa-1, a total of 52,358,830 paired-end reads were generated, equating to approximately 13.09 Gb of sequence data. For five southern solenodons (<i>S. p. woodi</i>), an average of
141 142 143 144 145 146 147	 Mitogenome sequence generation, assembly and annotation For each of six individuals of <i>S. paradoxus</i>, a mitogenome was assembled independently from Illumina WGS reads. From northern solenodon (<i>S. p. paradoxus</i>) Spa-1, a total of 52,358,830 paired-end reads were generated, equating to approximately 13.09 Gb of sequence data. For five southern solenodons (<i>S. p. woodi</i>), an average of 151,783,327 paired-end reads were generated, equating to an average of 15.33 Gb of
141 142 143 144 145 146 147 148	Mitogenome sequence generation, assembly and annotation For each of six individuals of <i>S. paradoxus</i> , a mitogenome was assembled independently from Illumina WGS reads. From northern solenodon (<i>S. p. paradoxus</i>) Spa-1, a total of 52,358,830 paired-end reads were generated, equating to approximately 13.09 Gb of sequence data. For five southern solenodons (<i>S. p. woodi</i>), an average of 151,783,327 paired-end reads were generated, equating to an average of sequence data for each individual. For each of the six individuals, a mitogenome was

152	were also assembled using a Bruijn graph based algorithm that considers coverage, based
153	on the software Cookiecutter (Starostina et al. 2015). Both produced identical results
154	outside of the control region and open reading frames were present in all coding regions
155	which might otherwise indicate assembly of numts (Lopez et al. 1994). The second
156	software was helpful for excluding reads of unusually low coverage that were almost
157	certainly numts, allowing accurate assembly even for the control region.
158	Complete mitogenome sequences were assembled separately for each individual.
159	Multiple sequence alignment with MAFFT (Katoh and Standley 2013) and a custom
160	variant calling script were employed to assess variation among mitogenomes. This
161	variation was confirmed by aligning reads from every individual to the assembly of every
162	other individual with Bowtie2 (Langmead and Salzberg 2012) and calling variants with
163	SAMtools and Bcftools (Li 2011). All solenodon mitogenomes reported in this study
164	were annotated and deposited in GenBank (accession numbers KU697358-KU697363).
165	Partial mitogenome sequences previously published for S. cubanus (Roca et al. 2004)
166	were likewise aligned to the consensus sequence with MAFFT (Katoh and Standley
167	2013), and variants were called.
168	Protein coding gene discovery and annotation for the consensus sequence of S.
169	paradoxus woodi was performed with NCBI ORF Finder (Wheeler et al. 2003) and NCBI
170	Blast (Altschul et al. 1990); rRNA gene discovery and annotation were performed with
171	Barrnap (github.com/tseemann/barrnap). The tRNA gene discovery and annotation was
172	performed with tRNAscan SE (Schattner et al. 2005), with 21 of the 22 tRNA coding
173	genes discovered using relaxed models in tRNAscan and Cove for mitochondrial

sequences, with a Cove score cutoff of 10 and intermediate score cutoff of 5. The gene

175	for tRNA-Ser, expected at approximately the 11.5 kilobase mark, was not discovered
176	with this method. We used Exonerate (Slater and Birney 2005) with the ungapped model
177	to align tRNA coding genes of Sorex araneus (NCBI accession number NC_027963) to
178	the mitogenome of Solenodon paradoxus woodi. All of these aligned to the previously
179	discovered regions, with eight (for Ile, Gln, Ala, Asn, His, Ser, Leu, Pro) alignments
180	spanning their entire lengths, including the previously missed tRNA-Ser at bases 11632-
181	11690. The structure and polymorphisms of the mitogenomes and of mtDNA segments
182	were visualized using the software Circos (Krzywinski et al. 2009).
183	To assess amino acid substitutions, pairwise alignments of protein coding regions
184	of S. paradoxus woodi to Talpa europaea (NCBI accession number NC_002391), Sorex
185	araneus (NC_027963), Felis catus (NC_001700) and Homo sapiens
186	(GCA_000001405.20) were performed with the software Exonerate (Slater and Birney
187	2005) model coding2coding. Provean (Choi and Chan 2015) scores were calculated for
188	the substitutions. A stringent score cutoff of -4.1 was used to identify mutations most
189	likely to have effect on protein function; the complete list of these mutations, grouped by
190	genes, is presented in Supplementary Table S1.
191	
192	Phylogenetic analyses and molecular dating
193	For phylogenetic analysis, nucleotide sequences were aligned using webPRANK

194 (Loytynoja and Goldman 2010) in EBI Web Services (McWilliam et al. 2013); alignment

- 195 output was visually inspected and edited using Mesquite v3.04
- 196 (http://mesquiteproject.org). Substitution models were determined using the Akaike
- 197 information criterion in jModeltest2 v 2.1.8 (Darriba et al. 2012). Model testing and

phylogenetic analyses were performed in CIPRES Science Gateway (Miller et al. 2015).
Effective sample size values for Markov chain Monte Carlo (MCMC) analyses were
verified to be at or above 200 for all parameters. All trees were visualized in FigTree
v1.4.2.

202 To examine relationships among the mitogenomes of S. paradoxus, the complete 203 mitogenomic alignment (including control region) of 16,457 bp was used for Bayesian 204 phylogenetic inference (BI) implemented in the program BEAST v1.8.2(Drummond et al. 205 2012), using the HKY substitution model, constant coalescent tree prior, and one of two 206 strict molecular clock rates (fast and slow, respectively): 3.72 x 10⁻⁸ (*Mus musculus*) 207 (Goios et al. 2007) or 1.665 x 10⁻⁸ (*Homo sapiens*) (Soares et al. 2009) substitutions per 208 site per year. Posterior distributions were obtained by MCMC sampling from at least 209 10,000,000 steps, with a discarded burn-in of at least 1,000,000; samples were drawn 210 every 1000 MCMC steps. 211 For another analysis, a 2,495 bp alignment of Cuban solenodon (Roca et al. 2004) 212 sequence spanning the 12S and 16S rRNA regions were aligned to the homologous 213 region of the S. paradoxus mitogenomes used to generate a maximum likelihood (ML)

tree in RAxML version 8.2.4 (Stamatakis 2014), using the GTR+I+G substitution model

and at least 1000 rapid bootstrap replicates. For additional examination of clades that

appeared to correspond to northern and southern geographic localities of S. paradoxus,

three previously published control region sequences (Allard et al. 2001) (two northern

and one unknown in origin; Figure 1, Table 1) were aligned to the newly generated

219 mitogenomes. A 389 bp alignment of the control region was used for this analysis.

220 Weighted maximum likelihood distances were calculated and used to generate a median

221	joining network using the software NETWORK v.4.6.1 (Bandelt et al. 2009). Population
222	differentiation (F_{ST}) between northern and southern solenodons based on 389 bp of the
223	control region was calculated with ARLEQUIN v.3.5 (Excoffier and Lischer 2010).
224	To place the solenodon into a phylogeny with other mammals, the solenodon
225	mitogenomes (without control region) were aligned to those of the mammals listed in
226	Supplementary Table S2. These included a shrew (Soricidae) and mole (Talpidae),
227	representing the families most closely related to the Solenodontidae, along with 52
228	additional taxa from Laurasiatheria. The mitogenome of the hedgehog, Erinaceus
229	europaeus, was excluded from the analysis due to previously reported (Mouchaty et al.
230	2000) significant deviation of the published mitogenome sequence from expected
231	nucleotide and amino acid compositions. For this analysis, a total of 15,624 aligned
232	nucleotide positions were analyzed after poorly aligned regions (mainly within 12S and
233	16S rRNA regions) were excluded. The software RAxML version 8.2.4 (Stamatakis
234	2014) was used to generate a maximum likelihood tree, using the GTR+I+G substitution
235	model and 1000 rapid bootstrap replicates.
236	For molecular dating of the split between the Solenodontidae and other
237	laurasiatherian families, fossil calibration dates reported previously (Meredith et al. 2011)
238	were used. These fossil calibration dates are listed in Supplementary Table S3, along with
239	the inferred date estimates for nodes on the mammalian mitogenomic tree. This analysis
240	was performed using BEAST v1.8.2 (Drummond et al. 2012). We utilized an
241	uncorrelated lognormal relaxed molecular clock model, which permits the rate of
242	molecular substitutions to be independent across the tree while incorporating uncertainty
243	in both tree topology and multiple fossil calibrations (Drummond et al. 2012). We used

244	randomly generated starting trees and birth-death process tree prior (Gernhard 2008). A
245	monophyly constraint was applied to non-eulipotyphlan taxa to minimize spurious dating
246	resulting from incorrect trees and to enforce the correct topology (Eulipotyphla sister to
247	all other laurasiatherians), which has been well established using nuclear data (Roca et al.
248	2004; Meredith et al. 2011). Posterior distributions were obtained by MCMC sampling
249	from at least 60,000,000 steps, with a discarded burn-in of at least 6,000,000; samples
250	were drawn every 1000 MCMC steps.
251	
252	Results
253	
254	The consensus mitogenome of the Hispaniolan solenodon was 16,457 bp, and
255	consists of the expected repertoire of 37 genes, including 13 that code for polypeptides,
256	22 for transfer RNA (tRNA) and the small and large subunits of ribosomal RNA (rRNA).
257	The length of the mitogenome was: 16,457 bp for Spa-K; 16,456 bp for Spa-L; 16,455 for
258	Spa-M, -N and -O; and 16,454 for Spa-1. Figure 2 represents gene and variant tracks
259	plotted with Circos (Krzywinski 2009). The five individuals of S. paradoxus woodi
260	exhibited little sequence variation (Figure 2). Spa-M, -N and -O were identical in
261	sequence. Between Spa-K and Spa-L there were 2 differences. And for Spa-M/N/O there
262	were 4 differences with Spa-K and 2 differences with Spa-L. By contrast, the
263	mitogenome of the individual of S. paradoxus paradoxus (Spa-1) exhibited 100
264	differences from the consensus of the 5 southern solenodons; and the mtDNA fragments
265	of S. cubanus showed an even greater density of differences (Figure 2). Coding genes
266	were discovered and annotated <i>de novo</i> . The relative positions and lengths of the genes in

267 S. paradoxus closely corresponded to those in the mitogenomes of other laurasiatherian 268 mammals, corroborating the result. Comparison of the amino acid residues of the protein 269 coding genes with those of four other species of eutherian mammals found many 270 substitutions with significant Provean scores. Mutations with Provean scores indicating 271 mutations most likely to have functional effects were grouped by gene, and are presented 272 in Supplementary Table S1. Most of these radical mutations corresponded to changes that 273 had occurred in the solenodon lineage, since the other species all shared the same amino 274 acid at most positions. Most of the radical mutations fell within the genes ND2 and ND5. 275 The complete mitogenomes (including control regions) of Hispaniolan solenodons 276 were used to infer a phylogeny in BEAST. The 5 solenodons from southern Hispaniola 277 formed a clade with the northern Hispaniolan solenodon as an outgroup to the clade 278 (Figure 3A). Using two evolutionary rates (the fast rate of house mouse (Goios et al. 2007), 3.72×10^{-8} and the slow rate of humans (Soares et al. 2009), 1.665×10^{-8} 279 280 substitutions per site per year) as extremes, the point estimate for the divergence between 281 the two clades was estimated as 78,000 and 171,400 years, respectively. Using an 282 alignment of 12S and 16S rRNA regions for which S. cubanus sequence could be used as 283 an outgroup confirmed that the split in S. paradoxus was between the 5 southern and 1 284 northern Hispaniolan solendons (Figure 3B). In an attempt to increase the number of 285 northern individuals that could be analyzed, the control region sequences of the S. 286 *paradoxus* genomes were aligned with those previously published for three solenodons, 287 two of northern provenance (Loma de la Jagua; Figure 1) and one of unknown origin. In 288 a network analysis of the control region sequences, there was separation between the 289 northern (n=3) and southern (n=5) individuals (Figure 3C). For this dataset, F_{ST} between

290	the northern and southern populations was estimated as $0.72477 (p = 0.03604)$. It is
291	important to note that although F_{ST} between the northern and southern populations was
292	high, there were only a few mutational steps that differentiated the two populations.
293	Our solenodon mitogenomic sequences (excluding control region) were then
294	aligned with those of 54 other mammalian taxa (Supplementary Table S2). The
295	relationships inferred for the taxa are shown in Supplementary Figures S1 and S2, and
296	confirms that solenodons were basal to soricids and talpids. Relying on well-established
297	fossil calibration dates reported previously (Supplementary Table S3) (Meredith et al.
298	2011), we estimated that solenodons had diverged from other mammals ca. 78.2 Mya
299	(95% CI of 62.1-98.6 Mya). In this case, the estimated coalescence date for the S.
300	paradoxus sequences (north vs. south) was 0.60 (95% CI of 0.33-0.94) Mya.
201	
301	
301 302	Discussion
	Discussion
302	Discussion There may be a number of potential caveats when considering the relationships
302 303	
302 303 304	There may be a number of potential caveats when considering the relationships
302 303 304 305	There may be a number of potential caveats when considering the relationships among some taxa or the molecular dating: (1) there is a potential that some published
 302 303 304 305 306 	There may be a number of potential caveats when considering the relationships among some taxa or the molecular dating: (1) there is a potential that some published mitogenomic sequences may have unwittingly incorporated numts (Lopez et al. 1994);
 302 303 304 305 306 307 	There may be a number of potential caveats when considering the relationships among some taxa or the molecular dating: (1) there is a potential that some published mitogenomic sequences may have unwittingly incorporated numts (Lopez et al. 1994); (2) the analyses may be affected by different evolutionary rates across branches; (3) long
 302 303 304 305 306 307 308 	There may be a number of potential caveats when considering the relationships among some taxa or the molecular dating: (1) there is a potential that some published mitogenomic sequences may have unwittingly incorporated numts (Lopez et al. 1994); (2) the analyses may be affected by different evolutionary rates across branches; (3) long branch attraction may potentially affect relationships; (4) various factors may lead to
 302 303 304 305 306 307 308 309 	There may be a number of potential caveats when considering the relationships among some taxa or the molecular dating: (1) there is a potential that some published mitogenomic sequences may have unwittingly incorporated numts (Lopez et al. 1994); (2) the analyses may be affected by different evolutionary rates across branches; (3) long branch attraction may potentially affect relationships; (4) various factors may lead to mito-nuclear incongruence, notably hybridization and sex-biased gene flow (Li et al.

sequences (Roca *et al.* 2004), and to a more recent estimate based on nuclear sequences

315 of 77.3 Mya (95% CI of 70.7-85.8 Mya) (Meredith et al. 2011).

316 This time estimate would be consistent with a vicariant origin for solenodons,

317 since the proto-Antilles may have been connected to the North American continent some

318 70-80 Mya (Hedges 1996; Iturralde-Vinent and MacPhee 1999; Acton et al. 2000).

However, the end of the Cretaceous 65 Mya is marked by the impact of an asteroid at

320 nearby Chicxulub in the Yucatan (Iturralde-Vinent and MacPhee 1999). Small fossorial

321 mammals may be more likely to survive some catastrophic events (Andersen and

322 MacMahon 1985), and it is unlikely that islands of the proto-Antilles were completely

inundated by the tsunami caused by the shallow-sea impact (Bryant 2014). Nonetheless,

324 any life in the proto-Antilles would have faced catastrophic effects, especially since the

islands would have been even closer to the impact site than they are today (Hedges 1996).

326 Additionally, although some geologists have stated that the mountains of Hispaniola have

327 remained above sea level continuously since the Mesozoic (Donnelly 1992), others have

328 argued that every Caribbean island has been submerged at some point during the

329 Cenozoic (Iturralde-Vinent and MacPhee 1999), which if true would rule out a

330 completely vicariant origin for the solenodon lineage.

331 A Mesozoic divergence date versus other mammals does not necessarily imply a

332 vicariant origin, as the solenodon lineage may have diverged more recently from

333 mainland mammals that are now extinct. Some North American extinct taxa thought to be

related to Solenodon, such as Centetodon or Apternodus (Asher et al. 2002; Lopatin

335 2003), did not appear to be close to *Solenodon* when morphological datasets were

336 analyzed while constrained to a scaffold tree of known molecular relationships (Asher et 337 al. 2002; Roca et al. 2004). The recently extinct Nesophontidae (Whidden and Asher 338 2001; Rzebik-Kowalska and Woloszyn 2012; Orihuela 2014), a family of 11 species of 339 insectivores that also lived only in the islands of the West Indies but went extinct after 340 European settlement, also did not appear close to solenodons in that analysis. One issue 341 with a dispersal of solenodons into the Antilles is that they are present only in Cuba and 342 Hispaniola, with their origin in the two islands attributed to vicariance, since the 343 divergence time between the two species (Roca et al. 2004) occurred when the two 344 islands separated geologically (Iturralde-Vinent and MacPhee 1999). Since solenodons 345 are also not found in other Caribbean islands, they are unlikely to be natural dispersers. 346 Nesophontes appears to have more regularly dispersed across islands, as species were 347 present in Puerto Rico and the Cayman Islands for which dispersal is the only plausible 348 explanation (Whidden and Asher 2001). Recently, an analysis of endocranial morphology 349 has suggested similarities between *Solenodon* and *Nesophontes* (Orihuela 2014). If a 350 sister relationship is upheld between *Solenodon* and *Nesophontes*, one can hypothesize 351 that the ancestral form was more likely to resemble *Nesophontes*, for which there is 352 strong evidence for dispersal, and that the morphology of non-dispersing *Solenodon* may 353 be derived subsequent to arrival. 354 Based on an examination of 65 southern and 128 northern specimens of S.

355 *paradoxus*, Ottenwalder has proposed placing populations in the Peninsula de Barahona

and Sierra de Bahoruco of the southwest Dominican Republic in a distinct subspecies S.

p. woodi, characterized by its small body size, and into which he also placed the

358 solenodons from Massif de la Hotte in Haiti (Ottenwalder 2001). Solenodons living north

359 of the Cul de Sac Plain/Neiba Valley (see Figure 1) were placed into the subspecies S. p. 360 *paradoxus*. These differences were likely due to repeated separation of northern and 361 southern Hispaniola by a marine canal into north and south paleo-islands during the 362 Pliocene and Pleistocene (Ottenwalder 2001). Our results are consistent with the 363 proposed subspecies division, since solenodons from the northern and southern 364 Dominican Republic (Figure 1) separate in a haplotype network (Figure 3C). The 365 southern Hispaniola solenodons appear to have much less genetic diversity than those in 366 the north (Figure 3C), which may be related to the sixfold larger size of the northern 367 paleo-island over the southern paleo-island (Figure 1) (Ottenwalder 2001). The estimated 368 F_{ST} of 0.72 between northern and southern populations suggests a high degree of 369 differentiation between the two geographic groups. This division into two subspecies 370 would have needed confirmed by additional sampling and by the use of nuclear genetic 371 markers. As this manuscript was in the peer-review process, a broader survey of 372 solenodons across Hispaniola was reported (Turvey et al. 2016), based on 534 bp of the 373 control region and 411 bp of cytochrome b in 34 samples of *Solenodon paradoxus*. They 374 report the species to be genetically divided into northern, south-eastern and south-western 375 populations (the last being confined to the Massif de la Hotte in Haiti) (Turvey et al. 376 2016). They also report morphometric support for this subdivision using 110 specimens 377 (Turvey et al. 2016). Our results here thus confirm their finding that the northern and 378 south-eastern populations are distinctive, and that the south-eastern population has very 379 limited mitochondrial DNA diversity, and provide further support for the conservation 380 management of Hispaniolan solenodons as distinct regional subspecies or evolutionarily 381 significant units.

382	
383	Acknowledgements
384	
385	We thank Nicolas Corona and Yimell Corona for assistance in collecting samples.
386	
387	Declaration of Interest Statement
388	
389	The authors have declared that there is no conflict of interest.
390	
391	Funding
392	
393	SJO, AK, and PD were supported by the Russian Ministry of Science Mega-grant
394	no.11.G34.31.0068.
395	
396	
397	References
398	
399	Acton GD, Galbrun B, King JW. 2000. Paleolatitude of the Caribbean Plate since the
400	Late Cretaceous. In: Leckie RM, Sigurdsson H, Acton GD, Draper G, editors.
401	Proc. ODP, Sci. Results. College Station (TX): Ocean Drilling Program. p. 149-
402	173.
403	Allard MW, Baker SD, Emerson GL, Ottenwalder JA, Kilpatrick CW. 2001.
404	Characterization of the mitochondrial control region of Solenodon paradoxus

405	from Hispaniola and the implications for biogeography, systematics, and
406	conservation management. In: Woods CA, Sergile FE, editors. Biogeography of
407	the West Indies: Patterns and Perspectives. 2nd ed. Boca Raton (FL): CRC Press.
408	p. 331-334.
409	Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment
410	search tool. J Mol Biol. 215:403-10.
411	Andersen DC, MacMahon JA. 1985. The effects of catastrophic ecosystem disturbance:
412	the residual mammals at Mount St. Helens. J Mammal. 66:581-589.
413	Asher RJ, McKenna MC, Emry RJ, Tabrum AR, Kron DG. 2002. Morphology and
414	relationships of Apternodus and other extinct, zalambdodont placental mammals.
415	Bul Amer Mus Nat Hist. 217:1-117.
416	Bandelt HJ, Yao YG, Bravi CM, Salas A, Kivisild T. 2009. Median network analysis of
417	defectively sequenced entire mitochondrial genomes from early and contemporary
418	disease studies. J Hum Genet. 54(3):174-81.
419	Borroto-Paez R. 2009. Invasive mammals in Cuba: An overview. Biol Inv. 11(10):2279-
420	2290.
421	Bryant E. 2014. Tsunami: The Underrated Hazard. 3rd ed. London: Springer.
422	Butler PM. 1988. Phylogeny of the insectivores. In: Benton MJ, editor. The Phylogeny
423	and Classification of the Tetrapods. Oxford: Oxford University Press. p. 117-141.
424	Choi Y, Chan AP. 2015. PROVEAN web server: a tool to predict the functional effect of
425	amino acid substitutions and indels. Bioinformatics. 31(16):2745-7.
426	Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new
427	heuristics and parallel computing. Nat Methods. 9:772.

- 428 Donnelly TW. 1992. Geological setting and tectonic history of Mesoamerica. In:
- 429 Quintero D, Aiello A, editors. Insects of Panama and Mesoamerica: selected
- 430 studies. Oxford: Oxford University Press. p. 1-13.
- 431 Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with
- 432 BEAUti and the BEAST 1.7. Mol Biol Evol. 29:1969-1973.
- 433 Eisenberg JF, Gould E. 1966. The behavior of *Solenodon paradoxus* in captivity with
- 434 comments on the behavior of other Insectivora. Zoologica. 51:49-58.
- 435 Eisenberg JF, Gozalez Gotera N. 1985. Observations on the natural history of *Solenodon*436 *cubanus*. Acta Zoolog Fennica. 173:275-277.
- 437 Emerson GL, Kilpatrick CW, McNiff BE, Ottenwalder J, Allard MW. 1999.
- Phylogenetic relationships of the order Insectivora based on complete 12S rRNA
 sequences from mitochondria. Cladistics. 15:221-230.
- 440 Excoffier L, Lischer HE. 2010. Arlequin suite ver 3.5: a new series of programs to
- 441 perform population genetics analyses under Linux and Windows. Mol Ecol
- 442 Resour. 10:564-7.
- 443 Folinsbee KE. 2013. Evolution of venom across extant and extinct eulipotyphlans.
- 444 Comptes Rendus Palevol. 12:531-542.
- Gernhard T. 2008. New analytic results for speciation times in neutral models. Bull Math
 Biol. 70:1082-1097.
- 447 Goios A, Pereira L, Bogue M, Macaulay V, Amorim A. 2007. mtDNA phylogeny and
- 448 evolution of laboratory mouse strains. Genome Res. 17:293-298.

- 449 Hahn C, Bachmann L, Chevreux B. 2013. Reconstructing mitochondrial genomes
- 450 directly from genomic next-generation sequencing reads–a baiting and iterative
- 451 mapping approach. Nucleic Acids Res. 41:e129.
- Hedges SB. 1996. Historical biogeography of West Indian vertebrates. Annu Rev Ecol
 Syst. 27:163-196.
- 454 Iturralde-Vinent MA, MacPhee RDE. 1999. Paleogeography of the Caribbean region:
- 455 implications for Cenozoic biogeography. Bull Amer Mus Nat Hist. 238:1-238.
- 456 IUCN. 2013. The International Union for the Conservation of Nature (IUCN) Red List of
 457 Threatened Species, 2013.2. http://www.redlist.org.
- 458 Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
- 459 improvements in performance and usability. Mol Biol Evol. 30:772-80.
- 460 Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, Marra
- 461 MA. 2009. Circos: an information aesthetic for comparative genomics. Genome
 462 Res. 19:1639-45.
- Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Meth.
 9:357-9.
- Li G, Davis BW, Eizirik E, Murphy WJ. 2016. Phylogenomic evidence for ancient

466 hybridization in the genomes of living cats (Felidae). Genome Res. 26:1-11.

- 467 Li H. 2011. A statistical framework for SNP calling, mutation discovery, association
- 468 mapping and population genetical parameter estimation from sequencing data.
- 469 Bioinformatics. 27:2987-2993.

470	Lopatin AV. 2003. A zalambdodont insectivore of the family Apternodontidae
471	(Insectivora, Mammalia) from the Middle Eocene of Mongolia. Paleontol J.
472	37:187-195.
473	Lopez JV, Yuhki N, Masuda R, Modi W, O'Brien SJ. 1994. Numt, a recent transfer and
474	tandem amplification of mitochondrial DNA to the nuclear genome of the
475	domestic cat. J Mol Evol. 39(2):174-90.
476	Loytynoja A, Goldman N. 2010. webPRANK: a phylogeny-aware multiple sequence
477	aligner with interactive alignment browser. BMC Bioinformatics. 11:579.
478	MacPhee RDE, Flemming C, Lunde DP. 1999. "Last occurrence" of the Antillean
479	insectivoran Nesophontes: new radiometric dates and their interpretation. Amer
480	Mus Novit. 3261:1-20.
481	MacPhee RDE, Novacek MJ. 1993. Definitions and relationships of Lipotyphla. In:
482	Szalay FS, Novacek MJ, McKenna MC, editors. Mammal Phylogeny: Placentals.
483	New York: Springer-Verlag. p. 13-31.
484	McDowell SB, Jr. 1958. The Greater Antillean insectivores. Bull Amer Mus Nat Hist.
485	115:113-214.
486	McKenna MC, Bell SK. 1997. Classification of Mammals above the Species Level. New
487	York: Columbia University Press.
488	McWilliam H, Li WZ, Uludag M, Squizzato S, Park YM, Buso N, Cowley AP, Lopez R.
489	2013. Analysis Tool Web Services from the EMBL-EBI. Nucleic Acids Res.
490	41:W597-W600.

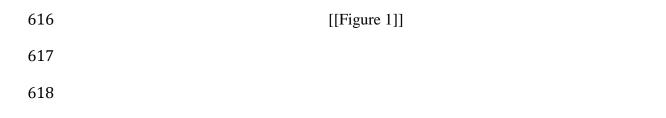
491	Meredith RW, Janecka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A,
492	Eizirik E, Simao TL, Stadler T, et al. 2011. Impacts of the Cretaceous terrestrial
493	revolution and KPg extinction on mammal diversification. Science. 334:521-524.
494	Miller MA, Schwartz T, Pickett BE, He S, Klem EB, Scheuermann RH, Passarotti M,
495	Kaufman S, O'Leary MA. 2015. A RESTful API for access to phylogenetic tools
496	via the CIPRES Science Gateway. Evol Bioinform Online. 11:43-48.
497	Mouchaty SK, Gullberg A, Janke A, Arnason U. 2000. Phylogenetic position of the
498	tenrecs (Mammalia: Tenrecidae) of Madagascar based on analysis of the complete
499	mitochondrial genome sequence of Echinops telfairi. Zool Scr. 29:307-317.
500	Orihuela J. 2014. Endocranial morphology of the extinct Antillean shrew Nesophontes
501	(Lipotyphla: Nesophontidae) from natural and digital endocasts of Cuban taxa.
502	Palaeontologia Electronica. 17:22A.
503	Ottenwalder J. 2001. Systematics and biogeography of the West Indian genus Solenodon.
504	In: Woods CA, Sergile FE, editors. Biogeography of the West Indies: Patterns and
505	Perspectives. 2nd ed. Boca Raton (FL): CRC Press. p. 253-329.
506	Ottenwalder JA. 1985. The distribution and habitat of Solenodon in the Dominican
507	Republic. [MS Thesis]. Gainesville (FL): University of Florida.
508	Roca AL, Bar-Gal GK, Eizirik E, Helgen KM, Maria R, Springer MS, O'Brien SJ,
509	Murphy WJ. 2004. Mesozoic origin for West Indian insectivores. Nature.
510	429:649-651.
511	Rzebik-Kowalska B, Woloszyn BW. 2012. New data on Nesophontes subfossil
512	nonulations from Cube and Isla de la Juwantud (Cube) Neues Jehrhuch für
	populations from Cuba and Isla de la Juventud (Cuba). Neues Jahrbuch für

- Schattner P, Brooks AN, Lowe TM. 2005. The tRNAscan-SE, snoscan and snoGPS web
 servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 33:W686W689.
- 517 Slater GS, Birney E. 2005. Automated generation of heuristics for biological sequence
 518 comparison. BMC Bioinformatics. 6:31.
- 519 Soares P, Ermini L, Thomson N, Mormina M, Rito T, Rohl A, Salas A, Oppenheimer S,
- Macaulay V, Richards MB. 2009. Correcting for purifying selection: an improved
 human mitochondrial molecular clock. Am J Hum Genet. 84:740-759.
- 522 Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis
- 523 of large phylogenies. Bioinformatics. 30:1312-1313.
- 524 Stanhope MJ, Waddell VG, Madsen O, de Jong W, Hedges SB, Cleven GC, Kao D,
- 525 Springer MS. 1998. Molecular evidence for multiple origins of Insectivora and for
- a new order of endemic African insectivore mammals. Proc Natl Acad Sci U S A.
 95:9967-9972.
- 528 Starostina E, Tamazian G, Dobrynin P, O'Brien SJ, Komissarov A. 2015. Cookiecutter: a
- 529 tool for kmer-based read filtering and extraction. bioRxiv DOI:
- 530 <u>http://dx.doi.org/10.1101/024679</u>.
- Turvey ST. 2010. Evolution of non-homologous venom delivery systems in West Indian
 insectivores. J Vert Paleontol. 30:1294-1299.
- 533 Turvey ST, Fernández-Secades C, Nuñez-Miño JM, Hart T, Martinez P, Brocca JL,
- 534 Young RP. 2014. Is local ecological knowledge a useful conservation tool for
- small mammals in a Caribbean multicultural landscape? Biol Conserv. 169:189-
- 536 197.

537	Turvey ST, Meredith HMR, Scofield RP. 2008. Continued survival of Hispaniolan
538	solenodon Solenodon paradoxus in Haiti. Oryx. 42:611-614.
539	Turvey ST, Peters S, Brace S, Young RP, Crumpton N, Hansford J, Nunez-Mino JM,
540	King G, Tsalikidis K, Ottenwalder JA, et al. 2016. Independent evolutionary
541	histories in allopatric populations of a threatened Caribbean land mammal.
542	Diversity Distrib. DOI: http://dx.doi.org/10.1111/ddi.12420
543	Waddell PJ, Shelley S. 2003. Evaluating placental inter-ordinal phylogenies with novel
544	sequences including RAG1, gamma-fibrinogen, ND6, and mt-tRNA, plus
545	MCMC-driven nucleotide, amino acid, and codon models. Mol Phylogenet Evol.
546	28:197-224.
547	Wheeler DL, Church DM, Federhen S, Lash AE, Madden TL, Pontius JU, Schuler GD,
548	Schriml LM, Sequeira E, Tatusova TA et al. 2003. Database resources of the
549	National Center for Biotechnology. Nucleic Acids Res. 31:28-33.
550	Whidden HP, Asher RJ. 2001. The origin of the Greater Antillean insectivorans. In:
551	Woods CA, Sergile FE, editors. Biogeography of the West Indies: Patterns and
552	Perspectives. 2nd ed. Boca Raton (FL): CRC Press. p. 237-252.
553	Wible JR. 2008. On the cranial osteology of the Hispaniolan Solenodon, Solenodon
554	paradoxus Brandt, 1833 (Mammalia, Lipotyphla, Solenodontidae). Ann Carnegie
555	Mus. 77:321-385.
556	Woods CA, Sergile FE. 2001. Biogeography of the West Indies: Patterns and
557	Perspectives. Boca Raton (FL): CRC Press.
558	
559	

560 Figure Legends

561


562	Figure 1. Elevation map of Hispaniola showing sampling localities. Hispaniolan
563	solenodon mtDNA sequences were from samples from the localities indicated, in both the
564	southern and northern Dominican Republic (DR). From the southern DR, in the Province
565	of Pedernales, La Cañada del Verraco and two collection points in El Manguito were
566	sampled for the current study. Novel mitogenomic sequences were also obtained from a
567	sample previously collected from the Cordillea Septentrional in the Province of Espaillat
568	in the northern DR (Roca et al. 2004). Also included in some analyses were previously
569	generated mtDNA sequences (Emerson et al. 1999; Allard et al. 2001) from two
570	specimens from Loma de la Jagua, Cabrera Promontory, Province of Maria Trinidad
571	Sanchez in the northern DR; a third mtDNA sequence from the same study was from a
572	specimen of unknown provenance. The key for elevation above sea level is shown; the
573	darkest shaded regions have the lowest elevation. The dashed line shows the position of
574	the Cul de Sac Plain and Neiba Valley; this region was periodically inundated by a
575	marine canal that separated Hispaniola into north and south paleo-islands during the
576	Pliocene and Pleistocene (Ottenwalder 2001). The original map courtesy of NASA is in
577	the public domain.

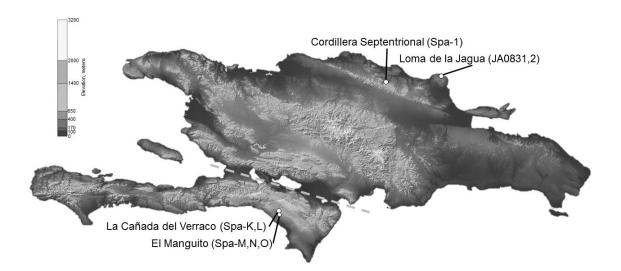
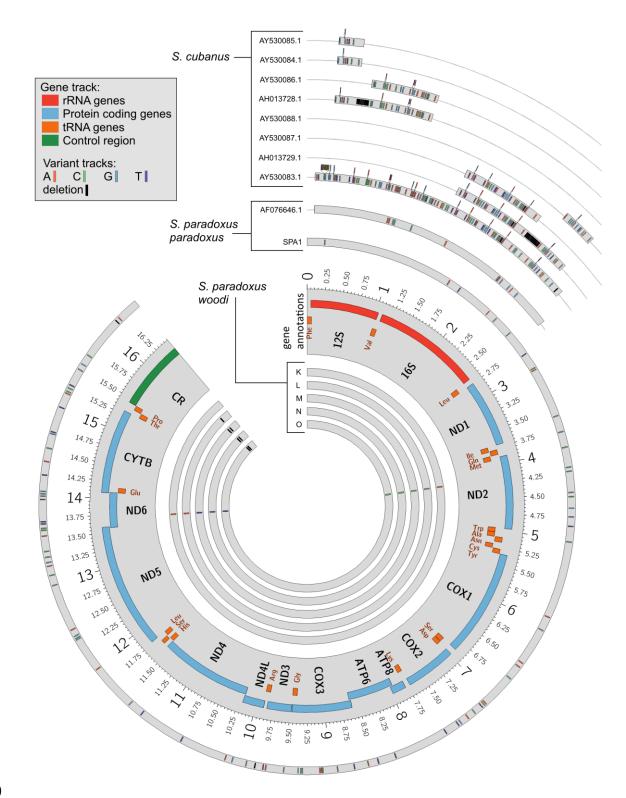
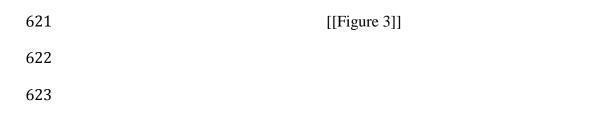
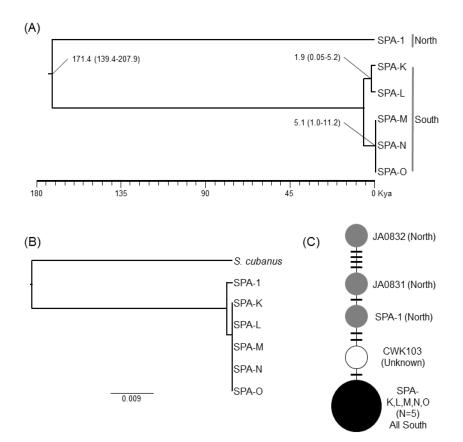

578

Figure 2. Structure and variation in the mitogenomes of *Solenodon*. The thicker gray
circle shows the location of genes and the control region of a consensus of the 5
mitogenomes of individuals from the south, with the positions of the rRNA genes (red),
protein coding genes (blue), tRNA genes (orange) and control region (green) indicated.

583	Genome coordinates are in kilobases. The inner gray semi-circles indicate mitogenomic
584	variation among solenodons from the southern Dominican Republic (subspecies S.
585	paradoxus woodi) when compared to the consensus. Spa-K and -L are from La Cañada
586	del Verraco, while Spa-M, -N and -O are from nearby El Manguito. Very little variation
587	is seen among these solenodons from southern Hispaniola. By contrast, the mitogenome
588	of a solenodon from northern Hispaniola (subspecies S. paradoxus paradoxus),
589	designated Spa-1, shows much higher variability when compared to the southern
590	consensus sequence. At the top of the figure, fragments of mtDNA previously reported
591	(Roca et al. 2004) for the Cuban solenodon (S. cubanus) show even greater variation
592	relative to the reference mitogenome; insertions are shown as cut-ins on the tracks.
593	
594	Figure 3. Relationship among Hispaniolan solenodons (S. paradoxus) from different
595	geographic regions. (A) Phylogeny generated using the full mitogenomic sequences,
596	including the control region (16,457 bp). Individuals are identified by sample number for
597	solenodons captured in the north (N) and south (S) of Hispaniola. The divergence date of
598	nodes was estimated using the rate observed in humans. Coalescence dates (in thousands
599	of years, with 95% CI) are indicated at the nodes with a chronogram below the tree. (B)
600	In order to root the tree, novel mtDNA sequences from S. paradoxus were aligned to a
601	previously reported 2,495 bp sequence of the Cuban solenodon (S. cubanus), which was
602	used as an outgroup (GenBank accession AY530083) (Roca et al. 2004). The root
603	separated the single northern Hispaniolan solenodon (Spa-1) from five southern
604	Hispaniolan solenodons. (C) To examine whether mitochondrial sequences of
605	Hispaniolan solenodons are different in the north and south of Hispaniola, the novel


606	sequences were combined in a 389 bp alignment with previously generated control region
607	sequences from two specimens from the northern Dominican Republic, and one of
608	unknown provenance. The network shows each difference as a hatch mark (all were
609	substitutions, there were no indels). The control region sequences from the 5 southern
610	specimens were identical and at one end of the network, separated from the sequences of
611	northern Hispaniolan solenodons. The separation of northern and southern haplotypes is
612	consistent with a previous suggestion, based on morphological measurements, that S.
613	paradoxus be subdivided into a northern (S. p. paradoxus) and a southern (S. p. woodi)
614	subspecies (Ottenwalder 2001).





619

[[Figure 2]]

Table 1. Provenance of Solenodon paradoxus samples

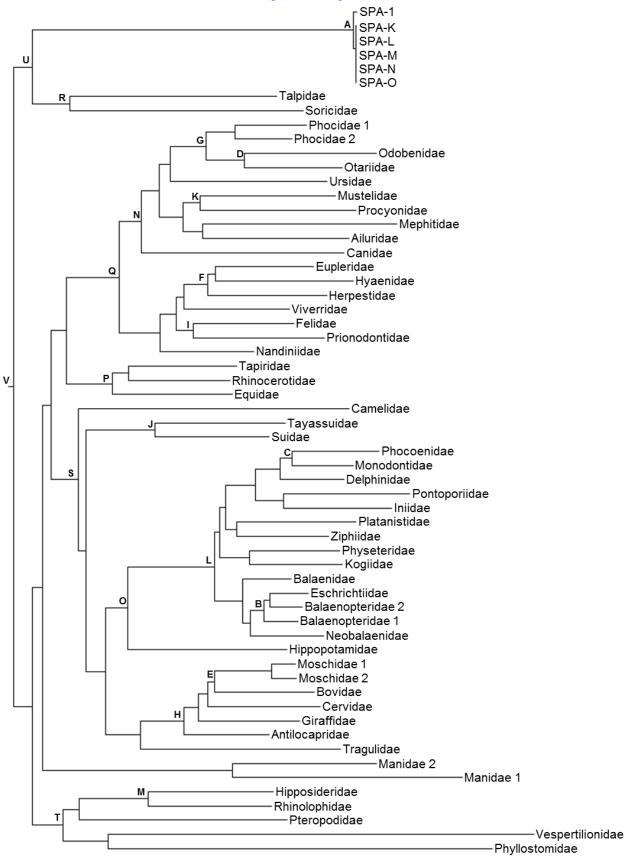
ID	Region	Province	Locality	Sex	Collected	Weight (g)		Coord	dinates		Sequences
SPA-K	South	Pedernales	La Cañada del Verraco	М	Wild	579	N 18º	09' 9.64"	W 71º 43'	12.0'	This study
SPA-L	South	Pedernales	La Cañada del Verraco	М	Wild	1020	N 18º	09' 9.64"	W 71º 43'	12.0'	This study
SPA-M	South	Pedernales	El Manguito - 1	М	Wild	1270	N 18⁰	06' 36.6"	W 71º 43'	3.58'	This study
SPA-N	South	Pedernales	El Manguito - 1	F	Wild	1420	N 18⁰	06' 36.6"	W 71º 43'	3.58'	This study
SPA-O	South	Pedernales	El Manguito - 2	F	Wild	1120	N 18º	07' 6.5"	W 71º 43'	14.7'	This study
SPA-1	North	Espaillat	Cordillera Septentrional	М	Zoo*	-	-		-		This study
JA0832	North	Maria Trinidad Sanchez	Loma de la Jagua	-	-	-	-		-		Allard et al. 20
JA0831	North	Maria Trinidad Sanchez	Loma de la Jagua	-	-	-	-		-		Allard et al. 20
CWK103	Unknown	I-	-	-	-	-	-		-		Allard et al. 20

*Collected at ZOODOM for a previous study not involving mitogenomics, Roca et al. 2004

626

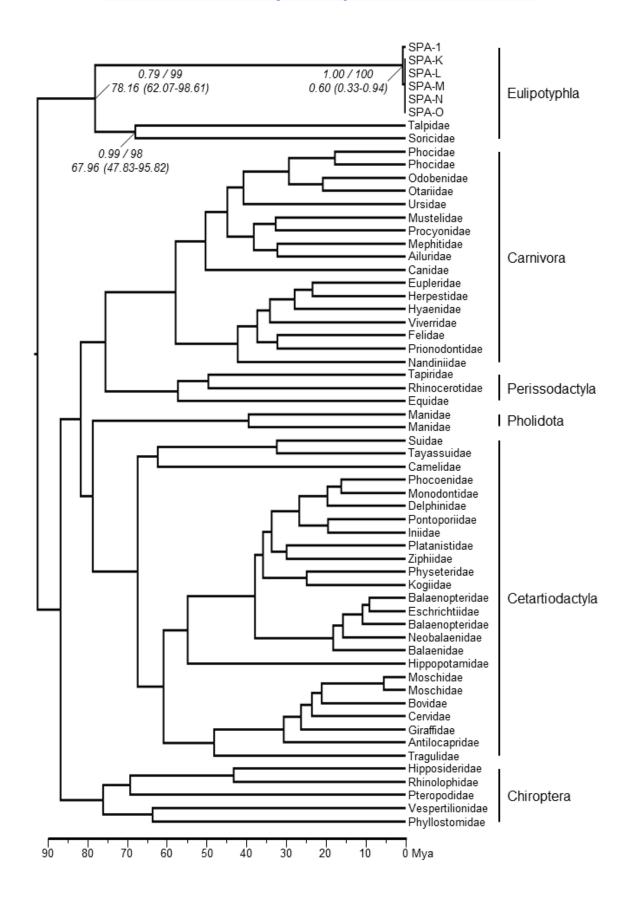
Mitogenomic sequences support a north-south subspecies subdivision within Solenodon paradoxus

Supplementary Material


Authors: Adam L. Brandt^{1,2+}, Kirill Grigorev⁴⁺, Yashira M. Afanador-Hernández⁴, Liz A. Paulino⁵, William J. Murphy⁶, Adrell Núñez⁷, Aleksey Komissarov⁸, Jessica R. Brandt¹, Pavel Dobrynin⁸, J. David Hernández-Martich⁹, Roberto María⁷, Stephen J. O'Brien^{8,10}, Luis E. Rodríguez⁵, Juan C. Martínez-Cruzado⁴, Taras K. Oleksyk^{4*} and Alfred L. Roca^{1,2,3*}

*Equal contributors
*Corresponding authors: <u>roca@illinois.edu</u>; <u>taras.oleksyk@upr.edu</u>

Affiliations: ¹Department of Animal Sciences, ²Illinois Natural History Survey and ³Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; ⁴Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico 00681; ⁵Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo, Dominican Republic; ⁶Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843; ⁷Department of Conservation and Science, Parque Zoológico Nacional (ZOODOM), Santo Domingo, Dominican Republic; ⁸Theodosius Dobzhansky Center for Genome Bioinformatics, St. Petersburg State University, 199004 St. Petersburg, Russia; ⁹Instituto de Investigaciones Botanicas y Zoologicas, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic; ¹⁰Oceanographic Center, Nova Southeastern University, Fort Lauderdale, Florida 33004


Figure S1. Relationship of solenodon mitochondrial genomes to those of other mammals.

The maximum likelihood tree of laurasiatherian mammals showing the position of solenodons was generated in RAxML version 8.2.4 (Stamatakis 2014), using the GTR+I+G substitution model and 1000 rapid bootstrap replicates. Full mitochondrial genome sequences (excluding control region and regions of poor alignment) from the taxa on the tree were used to generate the phylogeny. Letters indicate the nodes for which fossil calibration dates and inferred molecular dates are described in Table S3.

Figure S2. Phylogeny of laurasiatherian mammals showing the position of *Solenodon*

paradoxus. The tree was generated using the full mitogenome sequences except that regions of poor alignment were excluded, as was the control region, which is unreliable for the deep time scales involved (Ingman et al. 2000). The relationships among taxa were not constrained to those established using the fossil record or nuclear genetic relationships, since in some circumstances mitogenomic relationships may be incongruent with the true species tree (Petit and Excoffier 2009). For molecular dating, previously well-established fossil calibrations (Meredith et al. 2011) were incorporated into an analysis conducted using the software BEAST v1.8.2 software (Drummond et al. 2012). At eulipotyphlan nodes, the Bayesian posterior probability and maximum likelihood bootstrap support are listed above, while below are listed dates of divergence with 95% credibility intervals in parentheses. The time at which the solenodon mitogenome diverged from that of other mammals was estimated as 78.2 Mya (95% CI: 62.1-98.6 Mya). The point estimate for the divergence time between solenodons and other mammals is similar to previous estimates ranging from 73-76 Mya, based upon analysis of datasets largely comprised of nuclear sequences (Roca et al. 2004, Meredith et al. 2011).

Table S1. Radical mutations in mitochondrial protein coding genes of *S. paradoxus* in comparison to those of reference species. Mutations are shown in this format: position, amino acid in the reference mitogenome, amino acid in *S. paradoxus*. Scores were calculated with PROVEAN using a stringent threshold for listing the radical mutations of -4.1. Entries are vertically aligned with regard to preceding insertion and deletion events.

Gene	Reference species										
	Talpa europaea		Sorex araneus		Felis catu	IS	Homo sapiens				
ATP6	125,L,T	-4.525	125,L,T	-4.478	125,L,T	-4.537	33, т ,Н 125,L,Т	-4.310 -4.453			
ATP8	27,K,A	-5.702	27, K, A	-5.677	24,F,L 27,K,A	-4.253	27, K, A	-5.993			
	34,P,T 62,L,H	-4.805 -5.634	34,P,T 62,L,H	-4.792 -5.016	34, P, T 39, P, L 62, L, H	-4.690 -4.293 -4.682	34,Н,Т	-4.171			
'OX1	- -	-5.654	02,1,1	-3.010	02,L,H	-4.002					
:0X2	39,H,G	-7.301			39,H,G	-7.099	151,P,T	-5.157			
OX3	_	-	-	_	_	_	_	-			
YTB	_	-	-	_	_	_	_	_			
ID1	252,P,S	-4.615	252,P,S	-5.249	252,P,S	-5.008	250,P,S	-5.384			
	308,P,H	-6.980	308, P, H	-7.014	308, P, H	-6.881	306,P,H	-7.051			
ID2			20,G,S	-4.458	25,G,S	-4.367	22,G,S	-5.039			
	46,M,T	-4.480	41,M,T	-4.937			43,M,T	-4.721			
			96,P,I	-5.200	101,P,I	-5.685					
			147,Y,M	-5.460	152,Y,M	-6.104	149,Y,M	-5.543			
							153,P,N	-5.191			
			202,P,Q	-6.613	207,P,Q	-6.447	204, P, Q	-6.187			
	243,W,G	-10.996	238,W,G	-10.116	243,W,G	-10.578	240,W,G	-10.553			
	244,N,S	-4.510	239,N,S	-4.366	244,N,S	-4.544	241,N,S	-4.500			
	254,L,T	-4.230					295,N,S	-4.223			
	313,М,Т	-4.258	308,M,T	-4.449	313,M,T	-4.215	20071170				
	314,F,L	-4.986	309,F,L	-5.164	314,F,L	-5.218					
D3	27,L,P	-4.797	27,L,P	-5.226	27, L, P	-4.965	27,L,P	-5.285			
ID4							4,H,M	-4.380			
							5, S, Y	-4.341			
							185,G,S	-4.427			
D4L	-	-	-	-	-	-	_	-			
D5	62,S,Y	-4.845	62,S,Y	-4.857	62,S,Y	-4.745	60,S,Y	-4.623			
	154,G,S	-4.377	154,G,S	-4.401	154,G,S	-4.377					
	349,N,A	-6.467	349,N,A	-6.734	349,N,A	-6.467	347,N,A	-6.667			
	431,G,K	-4.196	431,G,K	-4.371		E ECO	429,G,K	-4.393			
	435,F,S	-5.564		F 00F	435,F,S	-5.562	433,F,S	-5.628			
	446,P,K	-5.870	446, P, K	-5.925	450 37 77	4 1	444, P, K	-5.883			
	450,N,K	-4.681	450,N,K	-4.558	450,N,K	-4.681	448,N,K	-4.691			
	469,N,Y	-4.690	469,N,Y	-4.226 -4.451	469,N,Y	-4.560 -4.244	467,N,Y	-4.369 -4.423			
	510,K,M	-4.121	510,К,М 514,Р,К	-4.402	510,K,M 514,P,K	-4.325	508,K,M	-4.544			
	578,Q,N	-4.282	514, P, K 578, Q, N	-4.335	578,Q,N	-4.282	512,Р,К 576,Q,N	-4.294			
'D6	106,Y,C	-4.909	106,Y,C	-4.378	106,Y,C	-4.945	106,W,C	-5.745			
20	138,E,G	-4.758	100,1,0	7.0/0	138,E,G	-4.775					
							162,F,V	-5.011			

Order	Family	Taxon	GenBank accession code		
Eulipotyphla	Solenodontidae	SPA-1	KU697358		
Eulipotyphla	Solenodontidae	SPA-K	KU697359		
Eulipotyphla	Solenodontidae	SPA-L	KU697360		
Eulipotyphla	Solenodontidae	SPA-M	KU697361		
Eulipotyphla	Solenodontidae	SPA-N	KU697362		
Eulipotyphla	Solenodontidae	SPA-O	KU697363		
Eulipotyphla	Soricidae	European shrew	NC_027963		
Eulipotyphla	Talpidae	European mole	NC_002391		
Cetartiodactyla	Antilocapridae	Pronghorn	NC_020679		
Cetartiodactyla	Balaenidae	Southern right whale	NC_006930		
Cetartiodactyla	Balaenopteridae 1	Pygmy Bryde's whale	NC_007938		
Cetartiodactyla	Balaenopteridae 2	Humpback whale	NC_006927		
Cetartiodactyla	Bovidae	Domestic cattle	NC_006853		
Cetartiodactyla	Camelidae	Bactrian camel	NC_009628		
Cetartiodactyla	Cervidae	Reindeer	NC_007703		
Cetartiodactyla	Delphinidae	Heaviside's dolphin	NC_020696		
Cetartiodactyla	Eschrichtiidae	Grey whale	NC_005270		
Cetartiodactyla	Giraffidae	Giraffe	NC_024820		
Cetartiodactyla	Hippopotamidae	Pygmy hippopotamus	NC_020697		
Cetartiodactyla	Iniidae	Amazon river dolphin	NC_005276		
Cetartiodactyla	Kogiidae	Pygmy sperm whale	NC_005272		
Cetartiodactyla	Monodontidae	Narwhal	NC_005279		
Cetartiodactyla	Moschidae 1	Anhui musk deer	NC_020017		
Cetartiodactyla	Moschidae 2	Siberian musk deer	NC_013753		
Cetartiodactyla	Neobalaenidae	Pygmy right whale	NC_005269		
Cetartiodactyla	Phocoenidae	Finless porpoise	NC_026456		
Cetartiodactyla	Physeteridae	Sperm whale	NC_002503		
Cetartiodactyla	Platanistidae	Indus River dolphin	NC_005275		
Cetartiodactyla	Pontoporiidae	La Plata dolphin	NC_005277		
Cetartiodactyla	Suidae	Domestic pig	NC_000845		
Cetartiodactyla	Tayassuidae	Collared peccary	NC_012103		
Cetartiodactyla	Tragulidae	Water chevrotain	NC_020714		
Cetartiodactyla	Ziphiidae	Ginkgo-toothed beaked whale	NC_027593		
Perissodactyla	Equidae	Horse	NC_001640		
Perissodactyla	Rhinocerotidae	White rhinoceros	NC_001808		
Perissodactyla	Tapiridae	Malayan tapir	NC_023838		
Carnivora	Ailuridae	Red panda	NC_009691		
Carnivora	Canidae	Domestic dog	NC_002008		

Order	Family	Taxon	GenBank accession code		
Carnivora	Eupleridae	Narrow-striped mongoose	NC_027828		
Carnivora	Felidae	Domestic cat	NC_001700		
Carnivora	Herpestidae	Indian mongoose	NC_006835		
Carnivora	Hyaenidae	Spotted hyena	NC_020670		
Carnivora	Mephitidae	Striped skunk	NC_020648		
Carnivora	Mustelidae	American marten	NC_020642		
Carnivora	Nandiniidae	African palm civet	NC_024567		
Carnivora	Odobenidae	Atlantic walrus	NC_004029		
Carnivora	Otariidae	California sea lion	NC_008416		
Carnivora	Phocidae 1	Harp seal	NC_008429		
Carnivora	Phocidae 2	Weddell seal	NC_008424		
Carnivora	Prionodontidae	Spotted linsang	NC_024569		
Carnivora	Procyonidae	Raccoon	NC_009126		
Carnivora	Ursidae	Giant short-faced bear	NC_011116		
Carnivora	Viverridae	Servaline genet	NC_024568		
Chiroptera	Hipposideridae	Great roundleaf bat	NC_018540		
Chiroptera	Phyllostomidae	Common vampire bat	NC_022423		
Chiroptera	Pteropodidae	Large flying fox	NC_026542		
Chiroptera	Rhinolophidae	Big-eared horseshoe Bat	NC_026460		
Chiroptera	Vespertilionidae	Red bat	NC_016873		
Pholidota	Manidae 1	Tree pangolin	NC_026780		
Pholidota	Manidae 2	Malayan pangolin	NC_026781		

Table S2. Continued.

Group	Node	Fossil*	Estimated	(95% CI)	Posterior probability	Bootstrap node support (%)
Base of S. paradoxus	А	-	0.60	(0.33-0.94)	1.00	100
Megaptera-Eschrichtius	В	7.3-23.03	10.74	(7.69-14.02)	1.00	100
Phocoenidae-Monodontidae	С	12.1-28.5	16.10	(11.52-20.40)	1.00	100
Otariidae-Odobenidae	D	15.97-34	20.84	(15.83-25.67)	1.00	100
Bovidae-Moschidae	Е	18-34	21.05	(16.49-25.54)	1.00	31
Herpestidae-Eupleridae	F	15.97-34	23.43	(18.44-28.85)	1.00	100
Phocidae-(Otariidae+Odobenidae)	G	20.43-34	29.36	(24.93-34.06)	1.00	100
Giraffidae-Antilocapridae	Н	17.8-34	30.55	(25.80-35.39)	1.00	100
Felidae-Prionodontidae	I	28.3-40.6	32.27	(27.29-37.10)	1.00	99
Suidae-Tayassuidae	J	15.97-37.3	32.37	(35.55-41.13)	1.00	100
Procyonidae-Mustelidae	К	27.6-40.6	32.61	(27.50-37.43)	1.00	96
Cetacea	L	33.8-48.8	37.80	(33.27-42.18)	1.00	100
Hipposideridae-Rhinolophidae	М	37.1-56	43.28	(34.18-52.18)	1.00	100
Canidae-Arctoidea	Ν	37.1-56	50.38	(45.25-55.75)	1.00	100
Whippomorpha	0	52.5-61.1	54.80	(50.85-58.73)	1.00	100
Base of Perissodactyla	Р	55.5-61.1	57.33	(54.11-60.58)	1.00	100
Base of Carnivora	Q	37.1-65.8	57.78	(52.11-63.57)	1.00	100
Talpidae-Soricidae	R	-	67.96	(47.83-95.82)	0.99	98
Base of Cetartiodactyla	S	52.5-65.8	67.46	(52.67-72.57)	1.00	100
Base of Chiroptera	Т	-	76.09	(66.57-85.48)	1.00	100
Base of Eulipotyphla	U	-	78.16	(62.07-98.61)	0.79	99
Base of Laurasiatheria	V	-	92.61	(80.06-119.48)	1.00	-

Table S3. Laurasiatherian fossil calibration dates and inferred molecular dating.

*Fossil calibration dates are as described previously (Meredith et al. 2011).

Supplementary References

- Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 29:1969-1973.
- Ingman M, Kaessmann H, Paabo S, Gyllensten U. 2000. Mitochondrial genome variation and the origin of modern humans. Nature. 408:708-713.
- Meredith RW, Janecka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simao TL, Stadler T, et al. 2011. Impacts of the Cretaceous Terrestrial Revolution and KPg extinction on mammal diversification. Science 334:521-524.
- Petit RJ, Excoffier L. 2009. Gene flow and species delimitation. Trends Ecol Evol. 4:386-393.
- Roca AL, Bar-Gal GK, Eizirik E, Helgen KM, Maria R, Springer MS, O'Brien SJ, Murphy WJ. 2004. Mesozoic origin for West Indian insectivores. Nature 429:649-651.
- Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30:1312-1313.