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ABSTRACT 

The production of activated carbon was carried out 
by impregnating the sargassum with a 85% H3PO4 so-
lution in a mass ratio of 1/3 sargassum/ H3PO4, with 
an impregnation time of 15 hours. The production of 
activated carbon from sargassum was carried out in 
a pyrolytic muffle furnace with a controlled nitrogen 
atmosphere. Sargassum samples were collected on the 
beaches of the Dominican Republic. Sargassum activa-
ted carbon has a specific surface area of ​​754 m2/g and 
the 2,4-D adsorption was pH dependent.

Keywords: adsorption, 2,4-dichlorophenoxyacetic 
acid, activated carbon, sargassum.

RESUMEN

La producción de carbón activado se realizó mediante 
la impregnación del sargazo con una solución de H3PO4 
al 85% en una relación másica de 1/3 sargazo/H3PO4, 
con un tiempo de impregnación de 15 horas. La produc-
ción de carbón activado a partir de sargazo se realizó en 
un horno de mufla pirolítica con atmósfera de nitrógeno 

controlada. Se recolectaron muestras de sargazo en las 
playas de República Dominicana. El carbón activado 
de sargazo tiene un área de superficie específica de 754 
m2/gy la adsorción de 2,4-D dependía del pH.

Palabras clave: adsorción, ácido 2,4-diclorofenoxia-
cético, carbón activado, sargazo.

RESUM: 

La producció de carbó actiu es va dur a terme im-
pregnant el sargàs amb una solució d'H3PO4 al 85% 
en una proporció de massa d'1/3 sargas/H3PO4, amb 
un temps d'impregnació de 15 hores. La producció de 
carbó actiu a partir de sargas es va dur a terme en un 
forn de mufla pirolític amb una atmosfera de nitrogen 
controlada. Es van recollir mostres de sargassos a les 
platges de la República Dominicana. El carbó activat 
de sargassó té una superfície específica de 754 m2/g i 
l'adsorció de 2,4-D depenia del pH.

Paraules clau: adsorció, àcid 2,4-diclorofenoxiacètic, 
carbó actiu, sargàs
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INTRODUCTION 

The intensive development of agriculture has led to 
an overconsumption of chemicals, with the con-
sequent contamination of soils and water. Among 
these chemicals are phenoxyalkanoic herbicides, 
with 2,4-dichlorophenoxyacetic acid (2,4-D) being 
the most widely used among them1,2. The 2,4-D has 
been classified as a refractory pollutant by the Envi-
ronmental Protection Agency (EPA)3, due to its high 
solubility in water and slow degradation by biological 
processes4. 2,4-D can negatively affect aquatic life in 
water bodies and can cause chromosomal aberrations 
in human lymphocytes5. 

For this reason, the World Health Organization 
(WHO) classified it as moderately toxic (Class II) 
and, therefore, established its maximum allowed 
concentration in drinking water at 100 ppb6. The 
content of 2,4-D in surface and groundwater has 
been reported to be greater than 0.1 μg/L7.

It is for all of the above, that studies for the decon-
tamination of waters contaminated with 2,4-D have 
been prioritized at the international level. Among the 
most studied processes are the advanced oxidation 
processes8-17 and adsorption18-32.

However, it should be noted that, although advanced 
oxidation processes guarantee the total degrada-
tion of the herbicide, these are still very expensive 
processes to treat large volumes of contaminated 
water. Therefore, an alternative is the combination 
of processes, where adsorption is initially used, to 
concentrate the contaminant, and then advanced 
oxidation processes.

Adsorption is considered as a f lexible, adaptable, 
selective and highly efficient method to elimina-
te micro-contaminants33. Among the adsorbents 
used for decontamination of waters with 2,4-D are 
activated carbons (CA) obtained from agricultural 
residues18, 21, 22, 25-27, 29, 31, 34, 35, derived from cellulose32, 
composites of different nature23,24,30,36, polymers37, 
and graphene nanospheres20.

We propose here, the use of Sargassum spp., as 
activated carbon precursor. Indeed, the beaches of 
the insular and continental Caribbean have expe-
rienced increasing floods of large masses of pelagic 
algae of the species S. natans and S. f luitans in the 
last decade40-46. These massive f loods to the coasts 
have had many environmental, health and financial 
implications42,43,45-53. Therefore, it is important to 
try to valorize sargassum and among the possible 
alternatives is obtaining activated.

Several research teams have reported the use of 
activated carbon obtained from sargassum for the 
adsorption of heavy metals55-59, carbon dioxide59-60, 
colorants61, pollutants from the oil industry62 and 
caffeine63, but there is no known previous study that 
has evaluated the adsorption of 2,4-D in sargassum 
activated carbon. Therefore, the objective of this 
study the adsorption 2,4-D herbicide activated carbon 
prepared from sargassum collected from the coasts 
of the Dominican Republic.

MATERIALS AND METHODS
CHEMICAL PRODUCTS

The 2,4-D (purity ≥ 99.0%) and the other chemi-
cal reagents were supplied by Sigma-Aldrich, all of 
analytical quality. The necessary solutions for the 
adsorption experiments were obtained by dilution 
with deionized water.

Collection and pre-treatment of sargassum

The species Sargassum fluitans was collected from 
the beaches of Punta Cana (Higüey province, Domi-
nican Republic) in the years 2017, 2018 and 2019. The 
sargassum was rinsed with seawater to remove the 
sand during collection. Subsequently, the sargassum 
was washed with tap water, fresh water, with the aim 
of carefully removing inorganic residues, mainly sand 
and salt, and separating the sargassum algae from 
any other type of algae. The washed sargassum was 
dried in the open air in order to remove the most 
possible amount of water before total drying in an 
NBC SARL muffle furnace for 48h at 85ºC.

The dried sargassum was ground with a mortar 
and an automatic cutter and sieved in a range of 0.5 
to 1.5 mm. Grinding sargassum not only reduces 
particle size, it also separates fine grains of sand and 
salt that pass through the 0.5 mm filter.

Obtaining activated carbon from sargassum

The production of activated carbon was carried out 
by impregnating the sargassum with an 85% H3PO4 
solution in a mass ratio of 1/3 sargassum/H3PO4. 
The impregnation time was 15 hours. After the im-
pregnation time, the sargassum and acid mixture 
was introduced into the muffle furnace in porcelain 
crucibles. The production of activated carbon from 
sargassum was carried out in a pyrolytic muffle 
furnace with a controlled atmosphere of nitrogen, 
designed and built by the company NBC SARL. The 
furnace is arranged in the facilities of the Instituto 
Tecnológico de Santo Domingo (INTEC) with the 
objective of carrying out experimental production 
of activated carbons. The pyrolysis was programmed 
by means of a PLC (Programmable Logic Controller), 
temperature increase rate of 4.3 ºC/min., to reach a 
maximum heating temperature of 600 ºC. The sample 
was then pyrolyzed at this temperature during 1 h.

The cooling of the oven is carried out progressively, 
so that its total cooling is achieved after 15 hours 
after the disconnection of its internal resistances. 
The activated carbon produced is then ground and 
washed with distilled water until neutral pH is re-
ached. Better washes are achieved when the water 
is heated to 60 °C and the sample is allowed to stir 
for 30 min. Multiple washes had to be performed, 
as many as necessary. After washing, the activated 
carbon drying was carried out in an oven at 110 ºC 
for 72 hours.
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Characterization of activated carbon

The specific surface area and pore volume of the 
AC were determined from the nitrogen adsorption 
isotherms at 77 K, using the analyzer of the series 
SORPTOMATIC 1990. The BET specific surface 
area was calculated from the nitrogen isotherm for 
relative pressures between 0.10 and 0.2264.

To quantify the pH at the zero charge point (pHPZC) 
0.1 g of carbon was added to 20 mL of 0.1 M NaCl 
solution at different initial pH values ​​between 2 and 
11, which is achieved with the addition of aqueous 
solutions of NaOH or 0.5M HCl. The vessels were 
placed on a thermostated orbital shaker at 25 °C for 24 
hours at 150 rpm, after which the pH was measured65.

The acid-base properties of AC were determined 
according to the procedure proposed by Boehm66. 
50 mL of 0.05 M NaOH solution was prepared to 
determine the acid groups and 50 ml of 0.05 M HCl 
solution to determine the basic groups. Those solu-
tions were contacted with 0.5 g of AC. The bottles 
were closed and shaken for 2 days. The charcoal was 
then separated from the solution with a 0.45 µm filter 
and 10 mL of each filtrate was titrated with HCl or 
NaOH (0.05 M), as appropriate.

AC pretreatment for adsorption studies

The AC particle size was reduced to 125 µm. To 
remove moisture from the AC, it was left for 48 h at 
70 °C in a vacuum desiccator, and then was deposited 
in sealed jars.

Kinetic study

Determination of the mass of AC and the time of  
maximum adsorption of 2,4-D in AC

To determine the adsorption curve, different masses 
of AC (3, 5, 9, 15, 20 mg) are placed in 100 mL glass 
bottles with 50 mL of the 2,4-D solution at 13 mg 
/ L, with an initial pH of 2.5 adjusted with a 10% 
solution of H2SO4. The samples are mechanically 
shaken and kept at a temperature of 25 ± 0.1 ° C, for 
a period of 2 hours. Every 10 min an aliquot of 1 mL 
was taken for analysis by UV spectrophotometry. 
The mass of AC that was selected depended on the 
absorption of 2,4-D and the detection limit of the 
method used to determine the concentrations of the 
analytes in solution. For the 3 mg mass, the study 
was performed in triplicate with an average relative 
error of determination of the concentration in the 
aqueous phase of 4.7%.

Influence of pH on the adsorption of 2,4-D in AC
The pH of the solution is usually an important factor, 

as it influences the surface charge of the adsorbent 
and speciation of the adsorbate in the solution. 

Taking into account the results obtained for the 
kinetic studies, a AC mass of 3 mg was selected. The 
weighed mass was transferred to 100 mL bottles with 
50 mL of 2,4-D solution of 20 mg/L concentration 
at different pHs (2.5, 5, 7 and 9). The samples are 

mechanically shaken and kept at a temperature of 25 
± 0.1 °C, for a period of 4 hours. At the end of this 
time, the solutions were centrifuged and an aliquot 
of 1 mL was taken to determine 2,4-D concentration 
by spectrophotometry. The study at pH 2.5 was per-
formed in triplicate with an average relative error of 
5% of the concentration in the aqueous phase. 

2,4-D adsorption isotherm in AC

The procedure described for the pH study is used, 
for different initial concentrations of 2.4D between 
0.5 and 20 mg/L. The study was carried out in tripli-
cate with an average relative error of determination 
of the concentration in the aqueous phase of 5.8%.

Modeling of adsorption isotherms
Table 1 shows the models used in the modeling of 

the adsorption isotherm.
The adjustment of the isotherm models to the ex-

perimental data was performed using a nonlinear 
regression algorithm. The procedure for calculating 
the value of the isotherm parameters is to minimize 
the sum of residual squares (Eq. 9).

		                (9)

Where  y  are the calculated and experi-
mental values for each point respectively.

Akaike’s methodology tries to find the model that 
best explains the data with a minimum of free pa-
rameters74. Assuming that the error in the models 
is normally and independently distributed, the AIC 
is defined by equation 10.

			              (10)

Where k is the number of parameters in the model 
and n is the number of data. The preferred model is 
the one with the lowest AIC value. When n is small 
compared to k, the AIC second order correction 
(AICc) is more accurate (Eq. 11). 

 
		            (11)

The average relative error is calculated by equation 
12.

 	           (12)

Determination of the concentration of 2,4-D

The 2,4-D standard solution was measured in a 
UV-SECOMAM spectrophotometer at a wavelength 
of 230 nm. 2,4-D solutions were prepared in a con-
centration range of (0.5-20 mg/L).
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RESULTS

Characteristics of activated carbon.
Sargassum activated carbon has a specific surface of 

754 m2/g, within the range of the specific surface va-
lues ​​of other activated carbons obtained from different 
varieties of sargassum, which range between 5.8 and 
1300 m2/g57-62. The total pore volume is 0.95 cm3/g with 
a prevalence of mesopores (0.63 cm3/g) over micropores 
(0.27 cm3/g). The Boehm test gave 5.01 mmol /g of acid 
groups with only 0.07 mmol/g of basic groups. This 
value, together with a pHPZC of 2.71, certify the acidic 
nature of the AC obtained. A more detailed description 
of the physical-chemical properties of this AC were 
published by Francoeur et al.63

Kinetic study for the determination of the mass of AC 
and the time of the maximum adsorption of 2,4-D in AC

Figure 1 shows the adsorption curve over time for 
2,4-D for five different masses of activated carbon. The 
highest adsorption capacity was achieved when 3 mg 
of activated carbon were used, so subsequent studies 
were carried out with that amount of AC. As for the 
adsorption time, it takes more than two hours to reach 
equilibrium, so subsequent studies were carried out at 
4 hours. The equilibration time for the adsorption of 
the herbicide on different adsorbents varies from 30 
minutes to 20 hours18,22,25,27,30,32.
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Figure 1. Kinetic study of 2,4-D adsorption in AC. With an 
initial concentration of 13 mg/L and a variable AC mass 
between (3-20 mg), at a pH = 2.5, with a stirring speed of 

180 rpm and a temperature of 25 °C.

The effect of the contact time shows that the adsorp-
tion of 2,4-D in the initial stage is faster, which can be 
explained because initially there are a large number of 
vacant sites available and the concentration gradient is 
also high, which results in faster absorption. However, 
in the subsequent adsorption stage, the removal rate 
gradually decreases with time until equilibrium is re-
ached. With increasing adsorption time, the amount 
of vacant sites on the AC surface gradually decrease. 
The remaining vacant sites are difficult to fill due to 
the repulsive forces between the 2,4-D molecules on 
the solid surface and those in the liquid phase, which 
ultimately slow down the rate of adsorption. This be-
havior varies depending on the nature of the surface 
of each AC35.

Table 1. Models of adsorption isotherms: q is the amount adsorbed of the compound in equilibrium per unit of adsorbent, 
q_max is the capacity of AC, C is the concentration of adsorbate in equilibrium in aqueous phase χ is the adsorbate 

interaction parameter -adsorbate, ν is the heterogeneity parameter, K are already model parameters. R is the parameter 
that considers the adsorbate-adsorbate interaction at a site in the Ruthven model, R2 and R3 are the parameters correspon-

ding to the binary and ternary adsorbate-adsorbate interactions in a box, respectively for the Ruthven model.



146  |  AFINIDAD LXXX, 599

Influence of the pH of the adsorption of 2,4-D on AC
The charges developed on the surface of the adsor-

bent and the degree of ionization of the adsorbate are 
functions of pH, therefore, the effect of the pH of the 
solution on the absorption of 2,4-D was studied for 
pH between 2 and 9. Figure 4 shows amount of 2,4-D 
adsorbed per gram of AC at different pH. The results 
indicated a reduction in the adsorption capacity of 
2,4-D with an increase in the pH of the solution. This 
is due to the combined effect of the zero charge point 
(pHPZC = 2.71) and the pH of the solution on the loads 
developed on the adsorbent surface. When the pH in 
the medium is less than pHPZC, the surface of the AC 
is positively charged and at pH greater than pHPZC the 
surface of the AC is negatively charged. On the other 
hand, the pKa of 2,4-D is 2.818, therefore, according to 
the relationship between pH and pKa, the molecular 
form of 2,4-D is expected is greater than that of the 
anionic form at acidic pH. Thus, the adsorption of 
2,4-D in molecular form on the surface of the AC is 
expected to be due to weak van der Waals interactions. 
Therefore, the elimination of 2,4-D is greater at a lower 
pH, in this case 2.5. (Figure 2).
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Figure 2. Influence of pH on adsorption at 25 °C and 4 
hours. 

A similar behavior was observed by Deokar et al.18 

when studying the adsorption of 2,4-D on bagasse ash, 
and demonstrating that the adsorption of the pesticide 
reached its maximum value at a pH of 2. On the other 
hand, when studying the Herbicide adsorption on rice 
straw AC best adsorption was achieved at pH 3, in a 
study interval between 3 and 1027. Even when using a 
completely different adsorbent, modified magnesium 
feerite nanoparticles with amino surface groups, the 
highest adsorption of 2,4-D is achieved at an acidic pH 
of 3, after having explored the pH zone of 3 to 1230.

2,4-D adsorption isotherm in AC.
For the determination of the isotherm, the optimum 

pH selected in the previous study was started. Figure 
3 shows the adsorption isotherm of 2,4-D on AC. The 
maximum estimated adsorption capacity is 51 mg2,4D/
gAC. C considering that the maximum adsorption ca-
pacities of 2,4-D on activated carbons obtained from 
different biomass sources ranges from 0.9 to 574.7 mg/
gAC,18,21,22,25-27,29,34, the values ​​obtained for this sargassum 
activated carbon is low. The highest adsorption values, 
between 134.8 and 574.7 mg/gAC, were obtained for 
activated carbons from willow, linseed, hemp25, rice 

husk27, granulated activated carbon of biomass34 and 
orange peel26. 
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Figure 3. The 2,4-D adsorption isotherm in AC at 25 °C 
and 4 hours. qe is the amount of compound adsorbed in 

equilibrium per unit amount of adsorbent (mg/L); ce is the 
equilibrium aqueous phase adsorbate concentration 

(mg/L).

Several studies have been conducted to elucidate the 
adsorption mechanism of many molecules, including 
pesticides and herbicides, on different adsorbents. The-
se publications reveal that the adsorption of organic 
molecules from dilute aqueous solutions in carbon 
materials is a complex interaction between electrostatic 
and non-electrostatic interactions and that both inte-
ractions depend on the characteristics of the adsorbent 
and adsorbate, as well as the chemical properties of the 
solution75-78. A variety of physicochemical forces, such 
as van der Waals, H-binding, dipole-dipole interactions, 
ion exchange, covalent bonding, cation bridging, and 
water bridging, can be responsible for the adsorption 
of organic compounds on activated carbon75,77. Taking 
into account the results obtained, and those reported 
by other authors, the adsorption of 2,4-D in the sar-
gassum AC seems to have a physical nature with the 
prevalence of weak electrostatic interactions of the Van 
der Waals type18,21,22.

CONCLUSIONS

The adsorption of the herbicide 2,4-dichlorophenoxya-
cetic acid from aqueous solutions in activated carbon 
obtained from sargassum was studied. The activated 
carbon obtained by activation with phosphoric acid has 
a specific surface of 754 m2/g, a total porous volume is 
0.95 cm3/g and a pHPZC of 2.71. 2,4-D adsorption was 
pH dependent, with a decrease in adsorption capacity as 
the initial pH of the solution increased from 2 to 9. The 
adsorption isotherm showed a maximum adsorption 
capacity of 51 mg of 2,4-D/g AC. This value is lower 
than that obtained for other activated carbons obtained 
from agricultural or forest residues. Jovanovic’s isotherm 
model provided a better correlation of experimental 
adsorption equilibrium data.
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