INDICE DE VULNERABILIDAD ANTE CHOQUES CLIMATICOS

República Dominicana

Resumen

El objetivo de esta consultoría para el PNUD es construir un índice de vulnerabilidad ambiental que refleje la probabilidad de que un hogar sea afectado por un fenómeno natural. Se utilizarán datos obtenidos de una encuesta realizada a hogares localizados en la zona afectada por las inundaciones del Lago Enriquillo. También se evaluará el impacto de la vulnerabilidad ambiental sobre los ingresos de los hogares con la meta de verificar la existencia de un círculo vicioso pobreza-vulnerabilidad ambiental-pobreza. La metodología de la construcción del índice de vulnerabilidad se aplica a nivel nacional utilizando la información suministrada por el SIUBEN. Se analiza la relación del índice de vulnerabilidad con indicadores de pobreza multidimensional — como el ICV- o pobreza monetaria.

Jaime Aristy-Escuder jaimearisty@gmail.com

Contenido

Int	roducción	2
1.	Definiciones básicas sobre vulnerabilidad ante choques climáticos	3
2.	Determinantes de la vulnerabilidad	5
3.	Construcción del índice de vulnerabilidad	7
4.	Caso dominicano	9
١	Estudios macro	11
	A nivel de hogares	14
İ	Índice de vulnerabilidad	27
	Cuantificación del índice de vulnerabilidad ambiental	29
	Cuantificación del índice de vulnerabilidad a nivel de hogares para todo el territorio nacional	33
5.	Recomendaciones	40
Bib	oliografía	41

Introducción

El objetivo de esta consultoría para el PNUD es construir un índice de vulnerabilidad ambiental que refleje la probabilidad de que un hogar sea afectado por un fenómeno natural. Se utilizarán datos obtenidos de una encuesta realizada a hogares localizados en la zona afectada por las inundaciones del Lago Enriquillo. También se evaluará el impacto de la vulnerabilidad ambiental sobre los ingresos de los hogares con la meta de verificar la existencia de un círculo vicioso pobreza-vulnerabilidad ambiental-pobreza. La metodología de la construcción del índice de vulnerabilidad se aplica a nivel nacional utilizando la información suministrada por el SIUBEN. Una vez se haya determinado el índice de vulnerabilidad se analizará su relación con indicadores de pobreza multidimensional —como el ICV- o pobreza monetaria.

Los indicadores de vulnerabilidad permitirán monitorearla en tiempo y espacio, mejorando el arsenal de políticas públicas en el país. Esto permitirá definir un conjunto de medidas de intervención óptimas que disminuyan los resultados esperados de los choques climáticos sobre los segmentos de población más vulnerables. La identificación de los hogares más vulnerables ayudará a los políticos locales y líderes comunitarios a definir actividades que reduzcan el costo humano, económico y social que provocan los eventos naturales extremos.

Vulnerabilidad viene de la palabra en latín *vulnerare*, que significa daño o la capacidad de ser dañado. Adger (2006) la define como el estado de ser dañado por la exposición a un estrés asociado con el cambio ambiental y climático y por la ausencia de capacidad de adaptación. Esto significa que la vulnerabilidad es una condición preexistente que caracteriza a un individuo, hogar, comunidad o país. Ante esa condición un determinado evento natural puede producir un daño diferente a cada una de las personas. Una familia con un bajo nivel de ingreso per cápita y que habita en una vivienda localizada cerca de un río o lago tiene una mayor vulnerabilidad ambiental a una familia de altos ingresos que habita en una vivienda localizada a la misma distancia de ese rio o lago. Asimismo, un hogar con acceso permanente a agua potable o a servicios de salud es menos propensa a enfermedades —como el cóleradespués de que ocurra un choque natural.

La vulnerabilidad ambiental se refiere a la posibilidad de que fenómenos naturales –como tormentas, inundaciones, sequías, terremotos- afecten negativamente a los hogares, tanto de manera física como socioeconómica. El daño provocado por alguno de esos eventos naturales puede ser la pérdida de propiedad, empleo, fuentes de ingreso o la vida. Algunos hogares tienen mejor capacidad de enfrentar esos eventos en función de su acceso a recursos naturales, materiales, económicos, humanos, sociales y políticos.² Los hogares con mayores ingresos tienen mayor resistencia, pues pueden absorber los impactos de los eventos climáticos negativos y seguir generando ingresos que permitan mantener sus condiciones de vida. Asimismo, esos hogares también tienen mayor resiliencia, pues poseen mayor capacidad de recuperarse rápidamente una vez ocurrido el evento.³ Existe evidencia que revela que los

¹ Rygel et al. (2006), p. 743. Un ejemplo de una persona vulnerable es el siguiente: Un soldado herido en el campo de batalla está en una condición vulnerable ante cualquier ataque de enemigos.

² López-Marrero y Wisner (2012).

³ Rygel et al. (2006), p. 744.

hogares más pobres son los que más aportan al conteo de víctimas fatales.⁴ Esto significa que la vulnerabilidad del hogar es una condición que existe ocurra o no el evento.

El presente estudio realiza un acercamiento a la cuantificación a nivel de hogares de un índice de vulnerabilidad ambiental a huracanes, tormentas y sequías. La disponibilidad de información, la cual se basará en una encuesta realizada a hogares localizados en la zona del Lago Enriquillo, ha definido el tipo de eventos naturales incluidos en el análisis. No obstante, se reconoce que el peligro de los terremotos y sus consecuencias son mucho mayores, tal como demostró el terremoto que impactó a Haití en enero 12 de 2010, en el cual más de 200 mil personas perdieron la vida, más de 300 mil resultaron heridas y más de 2.1 millones fueron desplazadas.⁵

Existe un conjunto de variables, incluidas en la base de datos del SIUBEN, que permiten un acercamiento a la vulnerabilidad ambiental y que podrían utilizarse para calcular un índice a nivel de hogares en la República Dominicana.

- Espaciales: cercanía de río, lago, arroyo o quebrada; fuente de abastecimiento de agua;
 zonas de derrumbes.
- Estructurales: tipo de vivienda; material de las paredes; material de techo; material de piso.
- Económicas: Situación laboral; categoría ocupacional; sector productivo donde obtiene los ingresos.
- Demográficas: cantidad de personas por hogar; presencia de niños, mujer jefa de hogar y envejecientes; hacinamiento.
- Salubridad: padecimiento de enfermedades; cercanía de la vivienda a cañada con basura o contaminada; cercanía a pocilga o granja.

Un conocimiento de los determinantes de la vulnerabilidad permite entender por qué algunos fenómenos naturales provocan daños severos a algunas personas, hogares, comunidades o países, mientras que a otros el daño es mínimo.

1. Definiciones básicas sobre vulnerabilidad ante choques climáticos

Un elemento fundamental para entender el impacto de los fenómenos naturales es la interrelación entre peligro, vulnerabilidad y riesgo dentro del contexto del cambio climático. Las definiciones de cada uno de esos elementos se presenta a en esta sección.⁶

Cambio climático: Es un cambio en el estado del clima que puede ser identificado por pruebas estadísticas mediante variaciones en la media y la varianza, y que persiste por un período largo de tiempo.⁷ Algunos autores atribuyen esos cambios a las actividades humanas, otros incluyen también las causas naturales.

⁵ López-Marrero (2012), p. 130-131.

⁴ Bara, C. (2010).

⁶ Véase Wisner, Gaillard y Kelman (2012) y López-Marrero (2012).

⁷ IPCC (2014), p. 4. Summary for policymakers.

Desastre: Es un evento extrema que causa gran daño, destrucción de activos y pérdida de vidas humanas.

Peligro (Hazard): Es la ocurrencia potencial de un evento por tendencia natural o inducida por los humanos que puede provocar la pérdida de vidas, daños físicos a la salud, pérdidas de propiedad, infraestructura, provisión de servicios, ecosistemas y recursos ambientales. El peligro incluye elementos como la probabilidad de ocurrencia de un evento de un nivel de intensidad o severidad determinado en un lapso de tiempo dado en un área específica.

Exposición: Son los elementos que pueden ser dañados por un evento. Son las personas, comunidades, especies o ecosistemas, recursos, infraestructura o activos económicos, sociales y culturales que pueden ser afectados negativamente por el evento climático.

Vulnerabilidad: Es un estado. Es la predisposición o propensidad a ser afectado negativamente. La vulnerabilidad es la sensibilidad o susceptibilidad a ser dañado y falta de capacidad de enfrentar ese daño y adaptarse. Depende de las características de la persona o grupo y su situación de anticipar, enfrentar, resistir y recuperarse del impacto de un evento ambiental.

Impactos: Efectos sobre los sistemas naturales y humanos provocados por eventos climáticos extremos. Se refiere a las consecuencias y resultados.

Riesgo: Es la combinación del peligro, la vulnerabilidad y la capacidad de enfrentar y recuperarse de un desastre. Es representado por la probabilidad de ocurrencia de un evento climático multiplicado por el impacto de ese evento. El riesgo resulta de la interacción entre la vulnerabilidad, exposición y peligro.

Adaptación: La habilidad de una persona, hogar o comunidad de adoptar acciones para resistir, enfrentar y recuperarse de los desastres. El proceso de ajuste a los eventos climáticos actuales o esperados y a sus efectos. La adaptación modera o evita el daño.

Resiliencia: Es la capacidad de los sistemas sociales, económicos y ambientales de enfrentar las catástrofes o peligros (hazard) mediante la respuesta o reorganización de manera que se mantengan las funciones esenciales, identidad y estructura. Es la capacidad de recuperación o de regeneración de los sistemas o elementos vulnerables para volver al estado inicial o al anterior al evento.

Los peligros o desastres relacionados con el clima producen generalmente resultados negativos sobre las comunidades, especialmente sobre aquellos que viven en pobreza. El peligro (probabilidad de ocurrencia) y la exposición (monto que se puede perder) son elementos exógenos o no controlables por el hacedor de política. Sin embargo, la vulnerabilidad (propensidad a ser afectado negativamente) sí puede ser modificado por el hacedor de política. Esto revela la importancia de determinar un índice de vulnerabilidad ante los choques climáticos. Si se reduce la vulnerabilidad se podría disminuir el riesgo frente a los fenómenos naturales (meteorológicos y climatológicos). El riesgo es una condición latente. Revela lo que podría suceder debido a la ocurrencia de fenómenos atmosféricos.

Riesgo= peligrosidad x vulnerabilidad x exposición

O también se puede simplificar:

⁸ IPCC (2014), p. 8 Summary for Policymakers.

Riesgo= probabilidad x consecuencia

Donde la peligrosidad es igual a la probabilidad de ocurrencia del evento y la consecuencia es el producto de la vulnerabilidad y la exposición.

2. Determinantes de la vulnerabilidad

Hay varios enfoques para analizar la vulnerabilidad y sus determinantes. El primero es el modelo basado en las condiciones socioeconómicas.

La diferencia de la vulnerabilidad de los hogares, localizados en una zona afectada por la misma peligrosidad de fenómenos naturales, depende de factores no climáticos, como son las diferencias socioeconómicas. Ejemplo. Un huracán afecta el Distrito Nacional, golpeando igual al ensanche Piantini y a la Zurza. La vulnerabilidad es totalmente distinta debido a que la población de la Zurza es pobre y su vivienda es más propensa a sufrir daños provocados por ese fenómeno natural. Además, los hogares que viven en Piantini poseen mayor capacidad de recuperarse después de ese fenómeno natural. Es muy probable que los habitantes de Piantini recuperen el servicio de electricidad y agua potable más rápido que los de la Zurza.

El aumento de la vulnerabilidad eleva el riesgo climático. Los hogares más vulnerables sufren un incremento de su riesgo de sufrir daños ante los desastres naturales.

Un mayor riesgo a fenómenos ambientales eleva la incidencia de la pobreza y a aumentar la desigualdad de ingresos. Existe amplia evidencia que muestra el impacto sobre la infraestructura, la propiedad privada, los activos generadores de ingresos, el empleo y los ingresos. Las comunidades más afectadas experimentan una reducción de sus condiciones de vida. Esto tiende a crear un círculo pobreza-vulnerabilidad ambiental-pobreza.

La vulnerabilidad varía en función del tiempo y del espacio. La evolución a lo largo del tiempo de los activos económicos influye sobre la exposición y vulnerabilidad. Aquellas personas que viven alrededor de zonas de influencia de un río están más expuestas y son más vulnerables que otras que viven alejadas de esa zona. Además, las personas, hogares y comunidades tienen diferentes niveles de vulnerabilidad en función de: la riqueza, educación, salud, género, edad y otros factores sociales, culturales, institucionales. La desigualdad reduce la capacidad de adaptación y la resiliencia y, en consecuencia, eleva la vulnerabilidad.

Algunos autores consideran la exposición como un componente de la vulnerabilidad.¹¹ Se determinan condiciones que hacen que una persona o lugar sea vulnerable a un peligro ambiental.¹² La vulnerabilidad es multidimensional y diferencial; esto es, varía en función del espacio físico y entre grupos de personas, también depende de la escala de análisis (individuo, hogar, comunidad, municipio,

⁹ IPCC (2014), p. 7. Intergovernmental Panel on Climate Change (IPCC)

¹⁰ Piantini es una comunidad de clase media alta y clase alta de la Capital de la República Dominicana. La Zurza es una comunidad muy pobre que conforma lo que se denomina como un barrio marginado localizado en el Distrito Nacional.

¹¹ IPCC (2010) cap.2 ver Turner et al 2003a.

¹² Véase Cutter (1996) y Cutter et al. (2003) citados por Adger (2006), p. 270.

provincia); y es dinámica, pues sus características y las fuerzas que la definen cambian a lo largo del tiempo.¹³

El nivel de exposición cambia con el nivel de ingresos. Los eventos atmosféricos tienden a producir mayores pérdidas económicas (en términos del PIB) y humanas en los países menos desarrollados. ¹⁴ Los países, comunidades, hogares o personas más pobres no tienen capacidad de protegerse o asegurarse ante el peligro ambiental. Por eso pierden más, en términos relativos, que los más ricos. La pérdida de la mayor parte de sus activos provoca un aumento de la incidencia y la severidad de la pobreza.

La política económica y social influye sobre los ingresos de los hogares. Una política económica que mejore el nivel educativo de la población, aumente el empleo, eleve los salarios, reduzca la pobreza y permita la creación de infraestructura pública adecuada –presas, carreteras, centros de refugio, centros de salud- reduce el grado de vulnerabilidad ambiental de las comunidades, hogares y personas. La disponibilidad de recursos públicos para la protección de la comunidad ayuda a reducir la incidencia de la vulnerabilidad ante fenómenos ambientales.

Las personas no son vulnerables únicamente porque están expuestas a un peligro atmosférico, sino debido a las condiciones de marginalidad en que habitan, lo cual está estrechamente asociado con el bajo nivel educativo. Becker (2005) escribió en el Wall Street Journal: "Una manera efectiva de las naciones pobres de responder en el largo plazo sería mediante la promoción de una mayor inversión en educación. Dado que la educación aumenta los ingresos de los individuos y la renta per cápita de los países, la educación claramente hace que sea más fácil enfrentar los desastres..." La educación permite a las personas tomar decisiones de largo plazo que les permite "anticipar la incidencia y localización de los desastres naturales cuando decidan dónde vivir y cómo construir sus viviendas, "esto significa que la educación lleva a la persona a protegerse más, a ser menos vulnerable.

Otro enfoque aborda la vulnerabilidad en el contexto de la adaptación al cambio climático, el IPCC en su cuarto Reporte describe la vulnerabilidad como una función de la exposición, susceptibilidad y capacidad de adaptación. El nivel de exposición es la naturaleza y el grado en que un sistema humano experimenta un estrés o tensión ambiental. La sensibilidad y la capacidad de adaptación son dos elementos que componen también la vulnerabilidad. La sensibilidad cuantifica el grado en que el sistema es modificado o afectado por las perturbaciones. Y la capacidad de adaptación es la habilidad de un sistema de absorber los peligros ambientales. A mayor nivel de ingresos mayor capacidad de adaptación.

Dimensiones de la vulnerabilidad¹⁷

• Ambientales y físicas

Sistemas naturales potencialmente vulnerables (zonas costeras, pequeñas islas localizadas en la ruta de ciclones); impactos sobre los sistemas (inundaciones, migración forzada). Esta dimensión trata sobre la

¹³ IPCC (2010), cap 2, Vogel y Obrien, 2004.

¹⁴ IPCC (2012), p. 7

¹⁵ IPCC (2012), cap. 2, p. 71. Ver citas de McCarthy et al. (2001), Brooks (2003), K. O'Brien et al. (2004a), Füssel and Klein (2006), Füssel (2007), and G. O'Brien et al. (2008).

¹⁶ Adler (2006), p. 270.

¹⁷ IPCC(2010), p. 47

exposición de las personas debido a asentamientos alrededor de zonas propensas a ser afectadas por eventos atmosféricos. Esto se agrava por el hecho de que el impacto puede aumentar debido a las condiciones espaciales¹⁸ (e.g., asentamientos alrededor de un río.)

Dimensión social

La dimensión social incluye aspectos demográficos, migración, educación, salud, bienestar económico, cultural, instituciones y aspectos de gobernanza. Por lo general, los más jóvenes, los envejecientes y las mujeres¹⁹ son los más vulnerables. Una población más educada puede enfrentar mejor los eventos atmosféricos extremos. El acceso a la información sobre alerta temprana, estrategias de respuesta, capacidad de enfrentamiento y mecanismos de adaptación, ciencia y tecnología, y capital humano, social y financiero es crítica para la reducción de la vulnerabilidad y el aumento de la resiliencia.²⁰ A su vez, estos eventos pueden limitar la capacidad de los padres de educar adecuadamente a sus hijos.

Las deficiencias institucionales de los organismos encargados del apoyo de la comunidad ante fenómenos naturales elevan la intensidad de los desastres. La falta de inversión pública en organismos de socorro, en instalaciones de refugio, entre otros, aumenta la vulnerabilidad ambiental de los hogares y las personas. Elevados niveles de déficit o deuda pública reducen la capacidad de la sociedad de enfrentar los eventos atmosféricos.

Dimensión Económica

Hay una gran diferencia entre la vulnerabilidad y la exposición entre los países desarrollados y en desarrollo. "Mientras un número similar de personas (en promedio) en países con un bajo y un alto desarrollo humano son expuestos a peligros cada año (11% y 15% respectivamente), el número promedio de los fallecidos es muy diferente (53% y 1% respectivamente)."²¹

La concentración de la economía en actividades agropecuarias y turísticas influye también sobre la vulnerabilidad ambiental. Comunidades y hogares que dependen de esas actividades tienen una mayor propensión a sufrir daños por huracanes, tormentas e inundaciones. Las islas Caribe han experimentado un deterioro significativo de esos sectores productivos.

3. Construcción del índice de vulnerabilidad

La literatura recoge los resultados de tres proyectos globales que tienen como meta la medición del riesgo y/o la vulnerabilidad, utilizando indicadores e índices a escala nacional para realizar comparaciones internacionales.²² Birkmann (2007) realiza una presentación detallada de los siguientes índices: El Índice de Riesgo de Desastre (DRI) del PNUD; el proyecto Hotspots de la Universidad de

¹⁸ Cutter (1996) desarrolló el concepto de hazards of place (peligrosidad del entorno).

¹⁹ En 1991 un huracán que impactó Bangladesh provocó 140 mil víctimas, de las cuales el 90% fueron mujeres y niñas. Más que diferencias biológicas o sicológicas esto se puede explicar por la influencia del género sobre la capacidad de generación de ingresos. Véase Bara (2010).

²⁰ IPCC (2010), cap. 2 p. 82

²¹ IPCC (2010), cap. 2 p. 77 citando a Peduzzi (2006.)

²² Birkmann (2007), p. 21.

Columbia; y los Indicadores para las Américas desarrollados por el Instituto de Estudios Ambientales de la Universidad Nacional de Colombia-Manizales.²³

El índice de Riesgo de Desastre se elaboró con el objetivo de verificar la influencia del nivel de desarrollo sobre el riesgo de desastre y la vulnerabilidad. Se calculó para inundaciones, ciclones y terremotos y el índice se basó en la tasa de mortalidad.²⁴ La vulnerabilidad es analizada como un factor que explica el porqué personas con la misma exposición a un peligro natural puede enfrentar un mayor o menor nivel de riesgo. La vulnerabilidad relativa la cuantifica como el ratio del número de víctimas fatales entre el número de personas expuestas al peligro. Otra medida de vulnerabilidad se obtiene mediante un análisis de regresión mediante el cual determinan los factores que explican la mortalidad ante determinados peligros. Se demuestra que países con un bajo PIB per cápita tienen una mayor vulnerabilidad.²⁵ Esta metodología se critica por el hecho de que solo incluye la mortalidad como dimensión para cuantificar vulnerabilidad.

El proyecto de Hotspots (puntos calientes o de conflicto) desarrolló un mapa mundial que exhibe los lugares con mayor riesgo de mortalidad y mayor potencial de pérdidas antes peligros naturales. Ese análisis incluyó riesgos vinculados a terremotos, volcanes, derrumbes, inundaciones, sequías y ciclones. El riesgo se estimó en términos de la mortalidad y las pérdidas económicas. No cuantifica explícitamente la vulnerabilidad, sino que la asocia con las pérdidas de vidas humanas y económicas.²⁶

Los Indicadores para las Américas incluyen cuatro índices: Índice de Déficit de Desastre; el Índice de Desastre local; el índice de Vulnerabilidad Prevalente; y el Índice de Gestión de Riesgos. ²⁷ El proyecto fue aplicado inicialmente a 12 países de Latinoamérica y del Caribe, incluyendo a la República Dominicana. El índice de Vulnerabilidad Prevalente es considerado el más relevante para medir la vulnerabilidad. Es un indicador compuesto por tres categorías. *Exposición y susceptibilidad física*, incluye indicadores como el acervo de capital, los medios de producción y sustento, y la densidad poblacional; *Fragilidad socioeconómica*, incluye la pobreza, desigualdad, desempleo, inflación, dependencia del crecimiento el PIB de la agricultura, deuda pública; *Falta de resiliencia*, incluye el índice de desarrollo humano, los refugios, camas de hospitales, el nivel de gasto social, entre otros indicadores. El índice de vulnerabilidad prevalente es el promedio simple de los tres indicadores. En ese trabajo que estudió a 12 países, la República Dominicana fue colocada en la quinta posición de mayor vulnerabilidad, registrando un índice de vulnerabilidad prevalente de 50. Los componentes individuales arrojaron las siguientes cifras: Exposición (50); Fragilidad socioeconómica (41); y Falta de resiliencia (59). Chile arrojó el menor valor (19) y Jamaica el mayor índice de vulnerabilidad (62).

El Programa de Indicadores de Riesgos de Desastre ha continuado operando bajo el amparo del Banco Interamericano de Desarrollo. Cardona (2008 y 2010) presenta resultados del Índice de Vulnerabilidad Prevalente para América Latina y el Caribe.

A diferencia de los índices de vulnerabilidad anteriores, que tienen una escala de país o regional, esta consultoría tiene como objetivo elaborar un modelo a nivel de hogar que permita calcular un índice de

²³ Citados en Birkmann (2007): UNDP (2004), Dilley et al. (2005) y Cardona (2005).

²⁴ Birkmann (2007), p. 22.

²⁵ Birkmann (2007), p. 23.

²⁶ Dilley eta al. (2005), citado por Birkmann (2007).

²⁷ Cardona (2005 y 2006) citados en Birkmann (2007), p. 25.

vulnerabilidad que reduzca todas las dimensiones y determinantes de la vulnerabilidad a una sola variable que pueda monitorearse en tiempo y espacio.²⁸ El índice de vulnerabilidad permitirá comparar la vulnerabilidad a nivel de hogar, comunidad y zonas geográficas.

Ese índice se calculará mediante un modelo logístico que determine la propensidad a ser afectado negativamente por un fenómeno natural en función de los factores socioeconómicos, infraestructura y condiciones ambientales de la vivienda, entre otros.

El índice puede ser calculado como la agregación de varios índices intermedios que recojan la propensión a perder el trabajo, la vivienda u otros activos. Una vez calculados esos índices intermedios se procedería a agregarlos. Este procedimiento puede basarse en un ordenamiento de Pareto para resolver el problema de los ponderadores ²⁹ o mediante un método que cuantifique la magnitud del vector que recoja todas las dimensiones de vulnerabilidad.

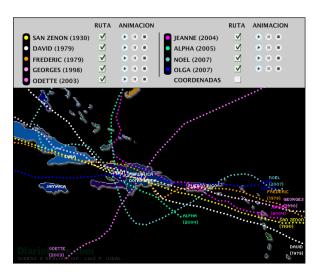
Existen varias categorías de indicadores de vulnerabilidad³⁰ que se pueden utilizar para determinar el índice de vulnerabilidad.

- Económicos: nivel y fuente de ingresos (la agricultura es más vulnerable); desigualdad; nivel de endeudamiento; disponibilidad de activos; acceso al mercado de capitales
- Salud y nutrición: Condiciones especiales de algún miembro del hogar hace más vulnerable a la familia.
- Educación: relacionada con el ingreso y la capacidad de adaptación.
- Infraestructura física: características del hogar.
- Instituciones, gobernanza y capital social: capacidad de adaptación y apoyo gubernamental ante las catástrofes. Disponibilidad de centros de refugio. A mayor cercanía de los centros urbanos menor vulnerabilidad.
- Factores demográficos: cantidad de miembros dependientes en el hogar
- Factores geográficos: Cercanía de ríos, lagos o zonas de derrumbes.

4. Caso dominicano

La República Dominicana comparte la isla de Santo Domingo con Haití. La localización de la isla en el norte del Caribe le hace propensa a ser impactada por huracanes y tormentas —y por las inundaciones que estos provocan-, las cuales son los eventos atmosféricos con mayor frecuencia e impacto. La temporada ciclónica está comprendida entre junio y noviembre. La mayor probabilidad de ocurrencia de esos fenómenos se registra entre agosto y octubre. Entre 1980 y 2012, la República Dominicana fue afectada por 28 huracanes y tormentas, y 20 inundaciones.³¹ En ese período, se estima que esos eventos provocaron pérdidas de vidas humanas en un rango comprendido entre 1,069 y 1,471 personas,

²⁸ Existe una interesante literatura sobre la identificación, cuantificación y ordenamiento de la vulnerabilidad, Véase Maskrey, 1993a; Lavell (2003); Rigel (2006); y Birkmann (2007)


²⁹ En Rygel et al. (2006) se presenta un método que resuelve el problema que se origina con la agregación de los indicadores de vulnerabilidad. Ese método se basa en un ordenamiento de Pareto.

³⁰ Adger et al. (2004), "New indicators of vulnerability and adaptive capacity." Tyndall Centre Technical Report 7.

³¹ Véase López-Marrero (2012), pp. 136-138.

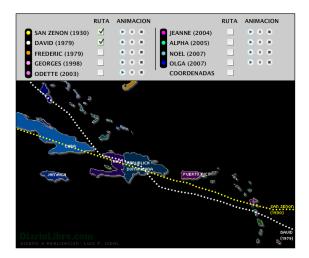
siendo superada solamente por Haití.³² La isla de Santo Domingo, combinando República Dominicana y Haití, es la zona del Caribe con mayor frecuencia de huracanes, tormentas e inundaciones, así como la zona con mayor cantidad de víctimas. A eso se añade el terrible terremoto que impactó Haití en enero de 2010, el cual provocó 220 mil víctimas fatales y más de 300 mil heridos.³³

Los huracanes y tormentas más devastadores que han afectado al territorio dominicano son: San Zenón (1930), David (1979), Federico (1979) y Georges (1998). Los vientos y lluvias provocaron miles de muertes, destrucción masiva de viviendas, inundaciones y pérdida de una gran cantidad de propiedades y plantaciones, entre otros daños.³⁴

Se estima que el ciclón de San Zenón (1930) provocó 8 mil muertos³⁵ y David (1979) alrededor de 2 mil.³⁶ A pesar de que San Zenón (categoría 2) no fue tan poderoso como David (categoría 5) provocó mayores daños, humanos y económicos, debido a la mayor presencia de construcciones muy débiles. Esto sugiere el hecho de que, dados dos fenómenos naturales similares (o casi) el impacto dependerá del grado de vulnerabilidad del país, zona, comunidad, hogar o persona. Y esa vulnerabilidad, a nivel de hogar, es una función de variables espaciales, estructurales, económicas, demográficas y de salubridad. Y a nivel de país la vulnerabilidad también depende de factores institucionales, políticos y culturales.

La debilidad de las viviendas es uno de los causales del daño provocados por los huracanes en la República Dominicana. En 2004, la CEPAL estimó en 1.9% del PIB el costo del huracán Jeanne. Alrededor de 7,500 viviendas fueron dañadas, de las cuales fueron destruidas totalmente una cifra equivalente a

³² Entre 1980 y 2012, Cuba, con una población superior a la dominicana registró una cifra de muertes provocadas por huracanas e inundaciones comprendida entre 195 y 205 personas. Cabe resaltar que ese país fue afectado por 28 huracanes y tormentas y 29 inundaciones. Esto refleja menor vulnerabilidad a nivel de hogares y mejor sistema de gestión de riesgos.

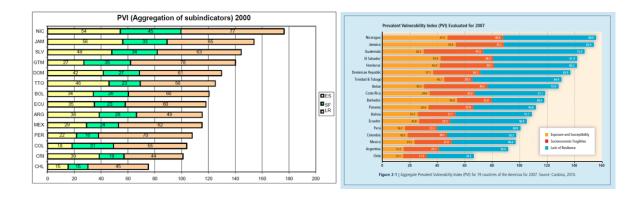

³³ Véase Disaster Emergency Committe en http://www.dec.org.uk/haiti-earthquake-facts-and-figures

³⁴ Véase la historia de los ciclones, huracanes y tormentas en la República Dominicana elaborada por Romina Vásquez en http://www.santo-domingo-live.com/santo-domingo/tiempo/historia-ciclones-republica-dominicana.html

³⁵ Véase Rappaport y Fernández-Partagas (1995), citado por López-Marrero (2012). Otras fuentes afirman que el saldo de muertos se colocó entre 2 mil y 4 mil personas.

³⁶ Thomas, J. (2011).

un 19% del total. El principal factor que explica ese impacto negativo fue la mala calidad de las viviendas, lo cual está relacionado a la pobreza y a la localización en áreas sujetas a inundaciones.³⁷


Estudios macro

A nivel de país

La República Dominicana se encuentra entre los países con un índice de vulnerabilidad prevalente (PVI) relativamente elevado. Este índice se compone de indicadores de exposición, fragilidad socieconómica y falta de resiliencia.³⁸ El caso dominicano registra un deterioro de ese índice de vulnerabilidad ambiental, al pasar de 43.3 a 45.7. Al detallar la evolución de los tres componentes del PVI se observa que en ese período el indicador de exposición mejoró, al pasar de 42 a 37.1, mientras que empeoraron los indicadores de fragilidad socioeconómica (subió de 27 a 34.1) y falta de resiliencia (61 a 65.9). Esa información debe ser utilizada por los diseñadores de políticas públicas para elaborar estrategias y ejecutar medidas que se traduzcan en la disminución del índice de vulnerabilidad ante los eventos de la naturaleza. El caso de Chile, que tiene los mejores indicadores, podría ser ilustrador.

³⁷ Véase CEPAL (2005), pp. 11-14.

³⁸ Véanse Cardona (2006 y 2010).

A nivel provincial

El informe *Puntos Críticos para la Vulnerabilidad a la Variabilidad y Cambio Climáticos en la República Dominicana y su Adaptación al mismo*³⁹ calcula índices de vulnerabilidad a nivel provincial utilizando como variables explicativas la exposición, la sensibilidad y la capacidad de adaptación. La exposición al clima se refiere "a estímulos relacionados con el clima, como incremento del nivel del mar, cambios en la temperatura, cambios en las precipitaciones, olas de calor, tormentas, sequía, inundaciones, etc." La sensibilidad se define "como el grado en que un sistema resulta afectado, negativa o positivamente, por elementos relacionados con el clima." Y la capacidad de adaptación es la habilidad de un sistema humano o natural de ajustarse al cambio climático." De esto se desprende que en el informe se indique que: "los factores críticos en términos de vulnerabilidad son: elevado grado de exposición al cambio climático; baja capacidad de adaptación; presencia de hábitats y/o sectores potencialmente sensibles."

Los sectores analizados son: Agricultura (frente a sequía e inundaciones); Agua para el Consumo Humano; Asentamientos humano; Energía; Sistema Nacional de Áreas protegidas; y Turismo. Para cada una de esos sectores se construyó un índice de vulnerabilidad, identificando los factores climáticos más importantes, que posteriormente fue agregado en un índice de vulnerabilidad global para cada provincia. En la siguiente tabla se presenta la correlación existente entre ese índice global y cada uno de sus componentes. Se observa que los indicadores de agua para consumo humano y asentamiento humano son los que tienen mayor grado de asociación con el índice ambiental agregado.

	IV_AMB~L	AGS_V1	AGI_V1	ACH_V1	AH_V1	E_V1	SINAP_V1	T_V1
IV AMBIENTAL	1.0000							
AGS_V1	0.5959	1.0000						
AGI_V1	0.3688	0.1264	1.0000					
ACH_V1	0.7572	0.4153	0.3102	1.0000				
AH_V1	0.6159	0.4294	0.5463	0.6662	1.0000			
E_V1	0.2575	-0.2989	-0.0352	-0.1092	-0.1190	1.0000		
SINAP_V1	0.3796	0.2313	-0.0409	0.0719	-0.0821	-0.1367	1.0000	
T V1	0.2388	-0.1134	-0.0877	0.3684	0.2615	-0.0065	-0.0003	1.0000

El índice de vulnerabilidad ambiental global calculado a nivel provincial muestra un grado de asociación significativo con los principales indicadores sociales. Se observa que existe una asociación inversa entre

-

³⁹ Izzo et al. (2013).

el nivel de educación —de la población que habita en la provincia- y el el índice de vulnerabilidad ambiental. Asimismo, se registra que a mayor ingreso promedio de la población —medido por el componente de ingreso del IDH- menor es la vulnerabilidad ante fenómenos ambientales. También existe una asociación inversa entre los indicadores de salud —medidos por el componente de salud del IDH- y la vulnerabilidad ambiental. Y, por último, a mayor índice de calidad de vida (ICV) menor es el índice de vulnerabilidad.

	IV_AMB~L	ICV_PROM	TASA_~IA	IDH_SA~D	IDH_IN~O	IDH_EDUC
IV_AMBIENTAL	1.0000					
ICV_PROM	-0.3881	1.0000				
TASA_NETA~IA	-0.5286	0.7314	1.0000			
IDH_SALUD	-0.1383	0.3177	0.3073	1.0000		
IDH_INGRESO	-0.3784	0.8445	0.6447	0.4882	1.0000	
IDH EDUC	-0.5875	0.8252	0.9586	0.3472	0.7417	1.0000

En términos causales se puede concluir que la educación tiene una influencia estadísticamente significativa sobre la vulnerabilidad ambiental. Cabe notar que la educación es un factor que explica el ingreso y éste también influye sobre la vulnerabilidad ambiental.

```
. reg IV_AMBIENTAL IDH_EDUC, robust
                                                 Number of obs =
Linear regression
                                                 F( 1, 30) =
Prob > F =
                                                                 4.80
                                                          = 0.0364
                                                 R-squared
                                                             = 0.3451
                         Robust
IV AMBIENTAL
                 Coef. Std. Err.
                                     t P>|t|
                                                    [95% Conf. Interval]
             -220.8678 100.8132 -2.19 0.036 -426.7559 -14.9797
   IDH EDUC
      _cons
              170.9321 51.39496
                                  3.33 0.002 65.96959 275.8946
```

Un aumento de la educación y el ingreso reduciría la vulnerabilidad ambiental y, en consecuencia, elevaría el índice de calidad de vida. El siguiente modelo de mínimos cuadrados en dos etapas evalúa el impacto de la educación a través de su influencia sobre el índice de vulnerabilidad ambiental.

```
. ivregress 2sls ICV_PROM IDH_INGRESO ( IV AMBIENTAL= TASA NETA COBERTURA MEDIA)
Instrumental variables (2SLS) regression
                                                     Number of obs =
                                                                       43.69
                                                     Wald chi2(2) =
                                                     R-squared
                                                                     0.4338
                                                                   = 5.8809
                                                     Root MSE
   ICV_PROM
                   Coef. Std. Err.
                                              P>|z|
                                                        [95% Conf. Interval]
                          .0514176 -1.84
IV AMBIENTAL
               -.0945231
                                              0.066
 IDH_INGRESO
                25.83751
                           8.221399
                                                         9.72386
                61.08597
                          6.359114
                                       9.61
                                              0.000
                                                        48.62233
                                                                     73.5496
       _cons
Instrumented: IV AMBIENTAL
              IDH_INGRESO TASA_NETA_COBERTURA_MEDIA
```

Los datos sugieren que la vulnerabilidad ambiental influye sobre las condiciones de vida. A mayor vulnerabilidad ambiental mayor pobreza. Esto sugiere la existencia de un círculo vicioso pobreza-vulnerabilidad ambiental-pobreza. Si se adoptan medidas para disminuir la vulnerabilidad ambiental se podría reducir la incidencia de pobreza.

. reg ICV_PROM IV_AMBIENTAL, robust

Linear regression

Number of obs = 32 F(1, 30) = 14.56 Prob > F = 0.0006 R-squared = 0.1507 Root MSE = 7.4389

ICV_PROM	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
IV_AMBIENTAL _cons	0558704 68.51685	.0146432 1.545072	-3.82 44.35	0.001	0857759 65.36139	025965 71.67231

A nivel de hogares

Zona geográfica

El estudio se circunscribe a dos provincias localizadas en la zona fronteriza de la República Dominicana. Las provincias seleccionadas fueron Independencia y Bahoruco. De la primera se encuestaron hogares en los municipios de Jimaní, Duvergé, La Descubierta y Postrer Río. De la provincia de Bahoruco se encuestó en los municipios de Los Ríos y Villa Jaragua

De acuerdo al censo de 2010, la población total de esos seis municipios asciende a 60,845 personas. El 70% habita en Independencia y el restante 30% en Bahoruco. Jimaní es el municipio con mayor porcentaje de población (27.1%).

Cum.	Percent	Freq.	Nombre de Provincia ONE 2002
11.36	11.36 88.64	31 242	BAORUCO INDEPENDENCIA
	100.00	273	Total
Cum.	Percent	Freq.	Nombre de Municipio ONE 2002
13.19	13.19	36 27	DUVERGE
26.37	3.30	9	JIMANI LA DESCUBIERTA
32.97 95.24 100.00	6.59 62.27 4.76	18 170 13	LOS RIOS (D.M.) POSTRER RIO VILLA JARAGUA
	100.00	273	Total

Las siguientes imágenes muestran las modificaciones que ha tenido el Lago Enriquillo desde 1984 hasta el presente. 40 Se puede observar cómo entre 1984 y 2003 el Lago Enriquillo fue reduciéndose, lo cual dejó una zona descubierta alrededor de sus orillas y amplió el espacio fuera del agua de las islas internas. A partir de esa fecha el Lago Enriquillo comenzó a recuperar su espacio histórico, provocando severas inundaciones y pérdidas de activos a los campesinos con propiedades en ese entorno.

La encuesta arroja los siguientes resultados con relación al impacto de los fenómenos naturales en la zona del lago. El 76.5% de los encuestados ha sido afectado directamente por lo menos por algún

 $^{^{40}\} http://www.theatlanticcities.com/technology/2013/05/terrifying-fascinating-timelapse-30-years-human-impact-earth-gifs/5540/?fb_action_ids=10153992297645099\&fb_action_types=og.likes$

evento natural (inundaciones, tormentas, sequías, terremoto). Los Ríos y Jimaní son los municipios más afectados directamente.

	Afectado por Algún Evento Natural						
Municipio/Provincia	*Afectado Directamente	**Afectado Indirectamente	***No Ha sido Afectado	Total	Población 2010		
DUVERGE	66.7%	19.0%	14.4%	100.0%	12,029		
JIMANI	91.3%	2.2%	6.5%	100.0%	16,510		
LA DESCUBIERTA	70.5%	9.1%	20.5%	100.0%	8,310		
POSTRER RIO	74.0%	13.3%	12.7%	100.0%	5,668		
Subtotal INDEPENDENCIA	75.0%	12.5%	12.5%	100.0%	42,517		
LOS RIOS	93.4%	6.6%	0.0%	100.0%	7,709		
VILLA JARAGUA	80.3%	9.9%	9.9%	100.0%	10,619		
Subtotal BAHORUCO	87.1%	8.2%	4.8%	100.0%	18,328		
Total	76.5%	12.0%	11.5%	100.0%	60,845		

* Afectado Directamente	Afectados por al menos 1 de los eventos de manera directa
** Afectado Indirectamente	No afectado de manera directa por ninguno de los eventos, pero si de manera indirecta al menos por 1 evento
*** No Ha sido Afectado	No afectado por ningún evento.

Características socioeconómicas

La población de esa zona encuestada es joven. El 54.4% de los habitantes tiene menos de 25 años. El 9% tiene 65 años o más. El 48% de la población son mujeres. Los hogares están conformados por un jefe, su cónyuge, los hijos y, en muchos casos, exhibe la presencia de nietos.

El nivel de educación es relativamente bajo. La tasa de analfabetismo (21.3%) es muy superior al promedio nacional. Postrer Río (25.3%) es el municipio que exhibe los peores indicadores en materia de alfabetización. El 60.4% de la población total tiene un nivel de educación igual o inferior a primaria; el 32.1% alcanzó la secundaria; y el 8% la universidad. Los jefes de familia tienen un menor nivel educativo. Casi 72 de cada 100 jefes de familia tiene una educación igual o inferior a la primaria. Solamente el 8% llegó a la universidad.

nivel_educativo	Freq.	Percent	Cum.
Primaria o menos Secundaria	193 54	71.75	71.75 91.82
Universitaria	22	8.18	100.00
Total	269	100.00	

El nivel de ingreso promedio del hogar al momento de la encuesta es de 1,329 pesos al mes. Si se descompone por la educación del jefe del hogar se observa que aquellos que alcanzaron un nivel de secundaria no obtienen un ingreso superior a los que tienen primaria o menos. Los universitarios tienen un ingreso per cápita de 1,455.7 pesos.

nivel_educa	Summ	ary of ingrepc1	Freq.
tivo	Mean	Std. Dev.	
Primaria	1346.696	1532.4063	171
Secundari	1203.2364	1083.1263	43
Universit	1455.7143	868.25963	20
Total	1329.6516	1410.9579	234

La mujer jefa de hogar tiene mayor nivel educativo que el hombre. El 77% de la mujer sabe leer y escribir. La proporción de hombres que saben hacerlo es de 68%. El 13% de la mujer tiene un grado académico universitario, mientras que el porcentaje de hombres con ese nivel apenas llega al 3.6%. El hombre tiene una mayor representación en las personas con un nivel educativo de primaria.

. tab CMH_207 mujer, nof col				. tab nivel_educ n	mujer, nof co	1		
2	07 - Sabe	RECODE of	_			RECODE of	_	
	escribir?	0	1	Total	nivel_educativo	0	1	Total
_	Si No	67.86 32.14	77.44 22.56	72.53 27.47	Primaria o menos Secundaria Universitaria	78.99 17.39 3.62	64.12 22.90 12.98	71.75 20.07 8.18
	Total	100.00	100.00	100.00	Total	100.00	100.00	100.00

A pesar del mayor educativo el ingreso per cápita del hogar que ella encabeza es menor que el ingreso per cápita del hogar que encabeza el hombre.

. tab mujer	if ingrepc0>0, sum(ingrepc0)	
RECODE of CMH_203 (203 - Sexo)	Summary of ingrepc0 Mean Std. Dev.	Freq.
0	3207.1979 5406.3271 2376.5916 3462.7399	124 114
Total	2809.3445 4589.0169	238

La tasa de desempleo de la zona, medida como los desempleados como porcentaje de la población económicamente activa, es de 13.5%. Cabe resaltar que la PEA es de apenas un 37.8% de la población en edad de trabajar (mayor o igual a 10 años). La mayor tasa de desempleo se registra en La Descubierta (22.2%) y la menor en Villa Jaragua (10%).

El cuentapropismo es la principal categoría ocupacional. 60 de cada 100 encuestados declara que es un trabajador por cuenta propia. El sector público es la principal fuente de ingresos formal. En promedio, el 23.9% de los encuestados es asalariado de alguna institución gubernamental. En Duvergé el 34.4% recibe un sueldo del sector público. Villa Jaragua es el Municipio con mayor porcentaje de personas empleadas por el sector privado (16.7%).

El ingreso promedio por categoría ocupacional revela que los trabajadores por cuenta propia son los que son los que perciben mayores ingresos (3,608 pesos al mes).

. tab CMH 212, sum(ingrepc0)

212 - Categoría Ocupacional	Summ Mean	nary of ingrepc() Freq.
Trabajo N	3078.9474	6705.1432	19
Asalariad	2477.9146	1867.4473	29
Asalariad	1750	707.10678	2
Cuenta pr	3608.1725	6564.7308	76
Otro	8000	0	1
Total	3276.2254	5769.482	127

El 53.4% de los hogares recibe algún tipo de transferencia del gobierno, como podría ser: progresando con solidaridad, bono gas, bono luz, entre otros. Villa Jaragua es el que tiene mayor porcentaje de hogares (92.3%) receptores de algún tipo de transferencia. Los Ríos (41.2%) es la comunidad que menor porcentaje de hogares recibe esas ayudas gubernamentales.

El 23.2% de los hogares recibe transferencias, generalmente una vez al mes, de algún familiar o amigo del extranjero. Postrer Río (32.5%) es la comunidad con mayor porcentaje de receptores de remesas.

	212 - Categoría Ocupacional (Edad >=10)							
Municipio/Provincia	Trabajo No remunerado	Asalariado(a) sector público	Asalariado(a) sector privado	Cuenta propia	Empleador	Otro	Total	
DUVERGE	12.5%	34.4%	12.5%	37.5%	3.1%	0.0%	100.0%	
JIMANI	17.9%	28.2%	0.0%	51.3%	0.0%	2.6%	100.0%	
LA DESCUBIERTA	22.2%	33.3%	0.0%	44.4%	0.0%	0.0%	100.0%	
POSTRER RIO	9.5%	23.3%	5.3%	61.9%	0.0%	0.0%	100.0%	
Subtotal INDEPENDENCIA	11.5%	25.7%	5.2%	56.9%	.4%	.4%	100.0%	
LOS RIOS	0.0%	4.5%	0.0%	90.9%	0.0%	4.5%	100.0%	
VILLA JARAGUA	0.0%	22.2%	16.7%	61.1%	0.0%	0.0%	100.0%	
Subtotal BAHORUCO	0.0%	12.5%	7.5%	77.5%	0.0%	2.5%	100.0%	
Total	10.0%	23.9%	5.5%	59.5%	.3%	.6%	100.0%	

La mitad de la población declara haber tenido durante los últimos doce meses, previos a la encuesta, tierras, propias o arrendadas, para sembrar o cosechar productos agrícolas, criar o tener animales. Esto sugiere que una de las principales fuentes de ingreso es el trabajo agrícola por cuenta propia. El 46.2% de los encuestados declara que la agricultura es una de sus principales fuentes de ingreso. El 20.9% afirma que obtiene sus ingresos de otros servicios y el 7% del comercio.

Municipio/Provincia	305a - Actualmente o durante los últimos 12 meses, ¿algún miembro de éste hogar tuvo tierras para sembrar o			
	Si	No		
DUVERGE	22.9%	77.1%		
JIMANI	48.1%	51.9%		
LA DESCUBIERTA	33.3%	66.7%		
POSTRER RIO	57.8%	42.2%		
Subtotal INDEPENDENCIA	50.6%	49.4%		
LOS RIOS	50.0%	50.0%		
VILLA JARAGUA	46.2%	53.8%		
Subtotal BAHORUCO	48.4%	51.6%		
Total	50.4%	49.6%		

El 93% de la población encuestada habita en viviendas independientes y el 6.3% lo hace en cuarterías o barracones.

El 57% de las viviendas están construidas en concreto o bloques de cemento. El restante 43% está construido en madera y otros materiales muy vulnerables a inundaciones, tormentas y huracanes.

		102a - ¿Cuál es el material predominante de las paredes de esta vivienda?								
Municipio/Provincia	Bloque o concreto, Ladrillo	Madera	Tabla de palma	Tejamanil	Otro	Total				
DUVERGE	41.7%	47.2%	11.1%	0.0%	0.0%	100.0%				
JIMANI	70.4%	25.9%	3.7%	0.0%	0.0%	100.0%				
LA DESCUBIERTA	77.8%	22.2%	0.0%	0.0%	0.0%	100.0%				
POSTRER RIO	57.6%	34.1%	7.6%	.6%	0.0%	100.0%				
Subtotal INDEPENDENCIA	57.4%	34.7%	7.4%	.4%	0.0%	100.0%				
LOS RIOS	61.1%	38.9%	0.0%	0.0%	0.0%	100.0%				
VILLA JARAGUA	38.5%	53.8%	7.7%	0.0%	0.0%	100.0%				
Subtotal BAHORUCO	51.6%	45.2%	3.2%	0.0%	0.0%	100.0%				
Total	56.8%	35.9%	7.0%	.4%	0.0%	100.0%				

El material predominante en el techo de las viviendas es el zinc. Sólo el 16% declaró tener un techo de concreto. Esto refleja vulnerabilidad ante fenómenos naturales, en particular ante las tormentas y huracanes.

	103a - ¿Cuál es el material predominante del techo de esta vivienda?							
Municipio/Provincia	Concreto	Zinc	Asbesto-	Tejas	Yagua/Cana	Otro	Total	
			Cemento					
DUVERGE	13.9%	83.3%	0.0%	0.0%	2.8%	0.0%	100.0%	
JIMANI	7.4%	77.8%	14.8%	0.0%	0.0%	0.0%	100.0%	
LA DESCUBIERTA	0.0%	44.4%	44.4%	0.0%	0.0%	11.1%	100.0%	
POSTRER RIO	20.0%	79.4%	0.0%	0.0%	.6%	0.0%	100.0%	
Subtotal INDEPENDENCIA	16.9%	78.5%	3.3%	0.0%	.8%	.4%	100.0%	
LOS RIOS	16.7%	83.3%	0.0%	0.0%	0.0%	0.0%	100.0%	
VILLA JARAGUA	0.0%	100.0%	0.0%	0.0%	0.0%	0.0%	100.0%	
Subtotal BAHORUCO	9.7%	90.3%	0.0%	0.0%	0.0%	0.0%	100.0%	
Total	16.1%	79.9%	2.9%	0.0%	.7%	.4%	100.0%	

El 91% de los encuestados vive en casas con pisos de cemento o de materiales de mejor calidad. Un 9% declara vivir en residencias con pisos de tierra.

El agua que recibe la población encuestada proviene de los acueductos. El 62.3% la recibe del acueducto, pero fuera de la casa. El 19.8% la recibe dentro de la vivienda. El 12.7% de la población obtiene el agua de una llave pública. La población de Postrer Río (23.7%) y Los Ríos (20%) son las que reciben en mayor proporción agua dentro de la casa. La mayoría de la población (71.9%) recibe agua los siete días a la semana. El 81% la recibe por lo menos cinco días a la semana. Para beber la población adquiere el agua en botellón (39%) o le echa cloro (41.2%).

El tipo de sanitario más utilizado es la letrina. 54 de 100 personas utiliza ese tipo de sanitario. Solamente el 34.8% posee inodoro. Mientras que hay un 8.4% de la población que no tiene ningún sistema de sanitario instalado. La Descubierta y Postrer Río son los municipios con mayor porcentaje de inodoros instalados. Villa Jaragua es el municipio con mayor presencia de letrinas como sanitario.

El uso de carbón y leña sigue siendo importante en esa zona del país. 27 de cada 100 personas utilizan ese tipo de combustible con mayor frecuencia para cocinar. Duvergé (47.3%) y Villa Jaragua (46.2%) son

los municipios con mayor uso de carbón y leña. El gas propano se utiliza más en Los Ríos (77.8%) y Postrer Río (76.8%).

Administrator (Duranta ata	112a - ¿Qué combustible utilizan con mayor frecuencia para cocinar?							
Municipio/Provincia	Gas propano	Electricidad	Carbón	Leña	No Cocina	Otro	Total	
DUVERGE	52.8%	0.0%	30.6%	16.7%	0.0%	0.0%	100.0%	
JIMANI	66.7%	0.0%	29.6%	3.7%	0.0%	0.0%	100.0%	
LA DESCUBIERTA	66.7%	0.0%	22.2%	11.1%	0.0%	0.0%	100.0%	
POSTRER RIO	76.8%	.6%	3.0%	18.5%	1.2%	0.0%	100.0%	
Subtotal INDEPENDENCIA	71.7%	.4%	10.8%	16.3%	.8%	0.0%	100.0%	
LOS RIOS	77.8%	0.0%	0.0%	16.7%	5.6%	0.0%	100.0%	
VILLA JARAGUA	53.8%	0.0%	7.7%	38.5%	0.0%	0.0%	100.0%	
Subtotal BAHORUCO	67.7%	0.0%	3.2%	25.8%	3.2%	0.0%	100.0%	
Total	71.2%	.4%	10.0%	17.3%	1.1%	0.0%	100.0%	

El 90% de la población utiliza la electricidad como fuente de alumbrado. Lámpara de gas propano (1.a%) y kerosene (2.6%) están prácticamente en desuso. Postrer Río es el municipio con menor energía del tendido eléctrico (86.3%), pero es la única con el uso de paneles solares (4.2%).

El ayuntamiento es la entidad que se utiliza para la eliminación de la basura. El 71.1% afirma que el ayuntamiento recoge la basura. El municipio de Postrer Río (65.3%) es el que menor recibe el servicio de recogida de basura del ayuntamiento.

En general, la mayoría de la población posee estufa (80.6%), nevera (65.6%), televisor (71.4%), lavadora (54.2%) y teléfono celular (77.3%). Sin embargo, mucho menor población posee un equipo de radio (26.7%), computadora (5.5%), inversor (10.6%), planta eléctrica (0.4%), aire acondicionado (0.7%), teléfono residencial fijo (1.1%) y tinaco (1.8%).

Con relación al medio de transporte propio, el 26% de los encuestados declaró poseer un motor y el 7.3% automóvil.

Amenazas

El 47.3% de la población considera que su vivienda está amenazada por inundaciones lentas como las que origina el Lago Enriquillo. Los habitantes de Jimaní (96.3%) y Duvergé (66.7%) son los que perciben mayor amenaza por ese tipo de evento. En términos de intensidad de la amenaza de este tipo de evento, el 53.2% de los encuestados declaró que la amenaza es alta y el 31.7% que es media.

La ocurrencia de inundaciones lentas en los últimos años explica la percepción de amenaza. El 81.3% de la población declara que en ese período han ocurrido en su comunidad eventos de este tipo. Jimaní (96.3%) y La Descubierta (88.9%) son los que tienen mayor población que declara que en los últimos ocho años ocurrieron inundaciones lentas.

El 40.6% de la población señala que las inundaciones lentas ocurren frecuentemente.

Las inundaciones repentinas provocadas por riadas, crecidas y avalanchas, también son percibidas como una amenaza. El 41.8% declara sentirse amenazada por esos eventos. Jimaní (92.6%) y Villa Jaragua (69.2%) son los que sienten mayor amenaza. El 44.1% de la población afirma que la amenaza es alta y el 30.6% la percibe como media.

El 52% de los pobladores de los municipios encuestados afirma que en los últimos ocho años han ocurrido inundaciones repentinas. Jimaní (70.4%) y La Descubierta (55.6%) son los que mayor cantidad de población respondió positivamente a la pregunta sobre la ocurrencia de esos eventos.

Las tormentas y vientos destructivos son otros fenómenos atmosféricos de preocupación. El 57.9% de la población se siente amenazado. Villa Jaragua (84.6) y Los Ríos (61.1%) de la provincia Bahoruco registran el mayor porcentaje. En este caso, el porcentaje de población que percibe esta amenaza como alta es menor (30.7%) con relación a quienes la ven como media (38.7%).

Con relación a la ocurrencia en los últimos ocho años, el 57.9% de la población declara que en ese período han ocurrido tormentas y vientos destructivos. Villa Jaragua (84.6%) y Los Ríos (61,1%) son quienes declaran en mayor proporción la ocurrencia de esos hechos.

Las sequías constituyen un evento de mucha preocupación. El 47.3% de la población declara que se siente amenazada por las sequías. Los pobladores de Villa Jaragua (69.2%) y Los Ríos (55.6%) son los que se sienten más amenazados. Las sequías son vistas preponderantemente como una amenaza alta (40.8%). El 36.7% de la población la percibe como una amenaza media.

Más de la mitad (52.4%) declaró que en los últimos ocho años fueron afectados por sequías. Villa Jaragua (69.2%) y Los Ríos (58.8%) son los que declaran en mayor proporción que hayan ocurrido esos eventos en ese período.

De los eventos de mayor preocupación, las seguías son el fenómeno que más se declara (43.1%) que ocurre frecuentemente.

Los incendios (12.1%), terremotos (22.1%), deslizamiento de tierras (8.5%) y derrumbes (7.0%) no son percibidos como una amenaza seria por la mayoría de la población.

Vulnerabilidad

Los pobladores de los municipios analizados sostienen en su mayoría que la principal causa para que una vivienda sea afectada por una catástrofe atmosférica es que esté localizada en una zona de peligro (35.6%) o que esté construida con materiales débiles y malas técnicas (19.5%).

El 73% de la población afirma que se fuertes lluvias o el desborde del lago dañaría su casa. La población de Villa Jaragua (100%) y Jimaní (100%) son los que se sientes más vulnerables ante esos eventos. Asimismo, el 58.4% de la población sostiene que se le dañarían sus enseres y muebles.

Los entrevistados también afirman que perderían sus cultivos y/o animales. El 67.1% de la población declaró que las lluvias o el desborde del lago les provocaría esas pérdidas. Villa Jaragua (100%) y La Descubierta (83.3%) son los que declaran en mayor proporción que perderían esos activos.

Esos eventos atmosféricos afectaría también la capacidad de trabajar. Cabe recordar que la mayor parte de la población son cuentapropistas, por lo tanto, la dificultar de trasladarse a trabajar significa una pérdida inmediata de ingresos. El 64.4% de la población sostiene que las lluvias o las inundaciones del lago le haría difícil trabajar y obtener ingresos.

También se registraría un deterioro del capital humano. El 86.6% de la población indica que aumentaría la probabilidad de enfermarse y el 64.9% percibe que tendría dificultad para obtener agua. De hecho, el 43.2% señala que en el último año en su comunidad se ha presentado escasez de agua para el uso doméstico, principalmente en Villa Jaragua (71.4%) y en La Descubierta (100%). Para poder satisfacer su necesidad de agua el 42.2% la busca en algún río o arroyo, lo cual aumenta la probabilidad de enfermarse.

Capacidad de adaptación

Los pobladores de esos municipios no tienen capacidad de adaptación o reacción adecuada ante una catástrofe natural. Ante una emergencia, el 89.1% declara que no tiene forma de proteger sus activos (herramientas de trabajo, animales, enseres del hogar, entre otros).

Las instituciones públicas no le han facilitado información o entrenamiento para enfrentar las catástrofes atmosféricas. El 75.5% declara que no ha recibido capacitación, orientación, reunión informativa para saber cómo debe manejarse en caso de que ocurra algún evento. El 78.9% sostiene que no ha recibido ningún plan de evacuación y el 51.7% declara que ante ese evento se iría a la casa de algún familiar o amigo. Ese sería el refugio que el 57.1% identifica como el lugar para irse a proteger ante el fenómeno atmosférico.

A pesar de la falta de apoyo institucional, la población estaría dispuesta a adoptar algunas medidas para salvaguardar sus vidas y activos ante los fenómenos naturales.

Con relación a los ingresos. El 86.6% declara que buscaría otras fuentes de ingreso, al mismo tiempo que el 52.7% de la población trataría de proteger o llevar a los animales a lugares más seguros. El 63.1% indica que usaría otro terreno para la plantación de los cultivos. Para la recuperación de las zonas, el 73.6% señala que promovería y participaría en la reforestación de las áreas devastadas. Además. El 61.1% afirma que llevaría actividades de arado y acondicionamiento de las tierras para su recuperación. Y la mayoría plantaría cultivos en épocas adecuadas, economizando el agua para su regadío.

Con relación a la salud. El 91.9% tomaría acciones para desinfectar el agua para el consumo humano y el 87.8% evitaría la contaminación de las aguas limpias con las sucias. El 86.6% dice que le daría un manejo adecuado a la basura en el hogar y su entorno. Y el 83.9% fumigaría para eliminar insectos y roedores con el objetivo de evitar focos de infecciones.

Con relación a la vivienda. El 82.6% sostiene que adoptaría medidas que mejorasen la estructura de la vivienda para soportar inundaciones, tormentas y huracanes. El 64.4% indica que reubicaría la vivienda, lo cual implica alejarse de la zona de peligro.

Afectados y daños

El 20.6% de la población encuestada fue afectada, directa o indirectamente, por la Riada de Jimaní en el 2004.

Los huracanes y tormentas son los fenómenos atmosfericos con mayor impacto directo e indirecto. El 48.9% de los encuestados declaró haber sido afectado por la Tormenta Noel y Olga de 2007. El 56.6% señaló que la tormenta Isaac de 2012 también los afectó. Asimismo, el huracán Sandy de 2012 afectó a casi 63 de cada 100 hogares.

Alrededor del 55% de los encuestados afirma que sus hogares han sido afectados por las inundaciones del Lago Enriquillo desde 2005.

El 54% señala que han sido afectados, directa o indirectamente, por la fuerte sequía registrada en los últimos ocho años.

Alrededor del 20% declaró que fueron afectados por el terremoto que se registró en la isla en enero de 2010. No obstante, sólo 7 puntos de esos 20 fueron afectados directamente.

Existe correlación entre algunos de los impactos. Aquellos que dicen que fueron afectados por la tormenta Noel y Olga también responden en mayor proporción que fueron afectados por las tormentas o huracanes Isaac y Sandy.

	A_Jimani	A_Noel	A_Lago	A_Terr~o	A_Sequia	A_Isaac	A_Sandy
A_Jimani	1.0000						
A_Noel	0.2502	1.0000					
A_Lago	0.3005	0.2656	1.0000				
A_Terremoto	0.5237	0.2863	0.2683	1.0000			
A_Sequia	0.2528	0.2353	0.1675	0.1993	1.0000		
A_Isaac	0.1541	0.5282	0.1860	0.2324	0.3370	1.0000	
A Sandy	0.1519	0.4371	0.1485	0.2182	0.3354	0.7464	1.0000

Dada la información sobre la correlación de los efectos se construyeron variables que los resumieran. Se creó una variable que recogiera a los afectados por tormentas —que agrupa a los afectados por Noel y Olga, Isaac y Sandy- por inundaciones —que agrupa a los afectados por la Ríada de Jimaní y por las inundaciones del Lago Enriquillo.

Por alguno de los efectos anteriores las casas sufrieron daños parciales. 41 de cada 100 hogares registró un daño parcial de su vivienda. La población de Jimaní fue la que en mayor proporción declaró que su vivienda sufrió daños parciales (60%). Muy pocos de los encuestados señaló que su casa se le daño totalmente. El 81% declaró que su casa no se le dañó totalmente.

Solamente 7% de los encuestados afirmó se le dañó su medio de transporte.

El principal daño fue la cosecha. El 69% de los encuestados declaró que su cosecha se dañó debido al fenómeno natural. Jimaní fue el municipio más afectado (88%). Plátano, guineo y café fueron los productos más afectados por el desastre natural. El 30% perdió animales.

El 16% de los jefes de familia encuestados perdió su empleo.

Sólo 6 de cada 100 encuestados declaró haber perdido equipos y materiales para trabajar.

Impacto sobre el ingreso mensual del hogar

El 71% de los encuestados señaló que los ingresos al momento de la entrevista son inferiores a los que tenía antes del evento.

			701 -
			¿Comparando
			con los
			ingresos
			que tenía
			antes del
			evento, sus
			ingresos
Cum.	Percent	Freq.	hoy
71.06	71.06	167	Inferiores
94.47	23.40	55	Iguales
100.00	5.53	13	Superiores
	100.00	235	Total

La mediana del ingreso mensual del hogar antes del evento era de 6 mil pesos. La distribución revela la existencia de una larga cola hacia la derecha, lo cual arroja una media mayor a la mediana.

702 - ¿Cuál era el ingreso mensual del hogar, antes del evento (inundaciones, ri

	Percentiles	Smallest		
1%	500	1		
5%	1900	300		
10%	2250	500	Obs	240
25%	4000	600	Sum of Wgt.	240
50%	6000		Mean	9700.837
		Largest	Std. Dev.	17379.15
75%	10000	50000		
90%	15000	70000	Variance	3.02e+08
95%	22500	150000	Skewness	8.039726
99%	70000	200000	Kurtosis	79.21352

El evento provocó una significativa disminución de los ingresos. Al momento de la encuesta la mediana de los ingresos fue de 3,500 pesos, lo cual representa una disminución de un 42%.

703 - ¿En este momento cual es el ingreso mensual

		del hogar:	?	
	Percentiles	Smallest		
1%	500	300		
5%	1000	500		
10%	1450	500	Obs	240
25%	2000	500	Sum of Wgt.	240
50%	3500		Mean	4598.958
		Largest	Std. Dev.	3969.477
75%	5000	20000		
90%	9000	20000	Variance	1.58e+07
95%	12500	20000	Skewness	2.477853
99%	20000	30000	Kurtosis	11.93834

En términos per cápita también se observa un significativo descenso de los ingresos del hogar. Antes del evento la media fue de 2,809 pesos (la mediana de 1,500) y después del evento cayó a 1,316 pesos (la mediana 845).

Variable	Obs	Mean	Std. Dev.	Min	Max
ingrepc0	238	2809.344	4589.017	.2	50000
ingrepc1	238	1316.638	1402.71	60	10000

El evento atmosférico disminuyó la dispersión de los ingresos. El coeficiente de Gini, medido sobre los ingresos per cápita del hogar, se redujo de 0.55 antes del evento a 0.47 después del evento. Esto se explica por la caída de los mayores ingresos, los cuales pasaron de 50 mil pesos per cápita a 10,000 pesos.

. adgini	ingrepc0
=======	
Gini:	.55
. adgini	ingrepc1
Gini:	. 47

El ingreso cayó por el descenso de la actividad económica a la que se dedica a trabajar. El 62% de los jefe de hogar afirma que después del evento de la naturaleza la actividad económica se redujo.

. tab ICH_803			
803 - ¿Después del evento (inundaciones, riadas, temblor de tierra, etc.), la ac	Freq.	Percent	Cum.
Ha disminuido	149	62.34	62.34
Sigue igual	76	31.80	94.14
Mejoró	9	3.77	97.91
Tuvo que cambiar de trabajo	5	2.09	100.00
Total	239	100.00	

El evento natural dificultó el acceso por carretera o camino a los sitios de producción. El 49.6% de la población fue afectado por el evento. Aquellos que declararon que tuvieron problemas de acceso registraron una mayor caída de sus ingresos (-1,820 pesos) con relación a los que no tuvieron problemas de acceso a su trabajo (-1,1163 pesos). No obstante, una prueba de medias arroja que la diferencia no es estadísticamente significativa.

. ttest di	ingrepc, b	y(falta_acces	30)			
Two-sample	e t test w	ith equal var	riances			
Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	119	-1163.465	429.9372	4690.061	-2014.857	-312.072
1	114	-1820.717	354.3667	3783.601	-2522.782	-1118.653
combined	233	-1485.039	280.0144	4274.234	-2036.735	-933.3429
diff		657.2527	559.7008		-445.5183	1760.024
diff =	= mean(0) = 0	- mean(1)		degrees	t of freedom	= 1.1743 = 231
	iff < 0) = 0.8793	Pr(Ha: diff != T > t) =		Ha: d Pr(T > t	iff > 0) = 0.1207

El 59.7% de los encuestados declaró que por efecto del evento ocurrido se redujo su trabajo. Aquellas personas que declararon tener menos trabajo registraron una disminución de 1,983 pesos mensuales per cápita. Mientras que las personas que mantuvieron el mismo nivel de trabajo sólo experimentaron un descenso de 785 pesos mensuales. La diferencia es estadísticamente significativa.

. ttest dingrepc, by(menos_trabajo)

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	94 139	-785.7054 -1983.473	344.7172 402.6428	3342.157 4747.088	-1470.245 -2779.62	-101.1654 -1187.326
combined	233	-1500.254	279.7052	4269.514	-2051.34	-949.1667
diff		1197.768	565.9166		82.74979	2312.786
	iff < 0) = 0.9823	Pr(Ha: diff != T > t) =			iff > 0) = 0.0177

La expansión del Lago Enriquillo provocó inundaciones importantes. El 35.8% de las fincas fue cubierta totalmente por las aguas del lago y el 8.9% fue cubierta parcialmente. Solamente un 15.7% de las personas pudo conseguir otra finca donde cultivar, alejándose del área de influencia del lago. Ante el evento, los productores han tenido que sembrar otros cultivos diferentes a los habituales o disminuido el tiempo que dedica a las actividades agropecuarias. Además, han tenido que gastar sus ahorros, tomar prestado, vender algunos animales y solicitar el envío de remesas a familiares o amigos. Para mejorar los ingresos algunos miembros de la familia ha tenido que entrar a formar parte de la población económicamente activa y salir a buscar trabajo. Incluso algunos miembros del hogar ha tenido que irse a trabajar de forma permanente fuera de la zona del Lago Enriquillo y algunos miembros del hogar se han tenido que ir a vivir con otros familiares. Pocas personas (7.9%) declararon que han recibido alguna ayuda del gobierno o de alguna ONG.

Las dificultades para mantener el mismo nivel de producción significan un descenso importante en los ingresos de esa población. Esto tiende a confirmar la hipótesis de cómo la vulnerabilidad ambiental hace que se acentúe la pobreza.

La pobreza también provoca un daño al medioambiente. El 30.2% de los encuestados declaró que debido al evento natural ha tenido que dedicarse a tumbar árboles o comprar leña para cocinar.

Impacto sobre el consumo y la inversión

El evento atmosférico redujo la cantidad de comidas diarias. Antes del evento el 50% de las familias tomaba 3 comidas al día. Después del evento, el 50% de las familias tomaba 2 comidas al día.

El evento provocó problemas para conseguir agua para el consumo en la vivienda, sea para beber, cocinar, bañarse, a un 21% de la población. No han tenido problema para conseguir agua para el riego agrícola.

El evento provocó la posposición de las decisiones de inversión. Alrededor del 70% de los encuestados declaró que después del evento decidió posponer sus inversiones y mejoras en sus negocios o fincas. Antes del evento el 16.5% había decidido ampliar la finca o el terreno y el 8.1% tenía pensado comprar terreno.

Con relación a la vivienda, antes del evento el 13.9% de la población tenía previsto la reconstrucción o remodelación de áreas de la vivienda consideradas en mal estado. El 16.5% había decidido ampliar la vivienda y el 9.2% pintarla.

El evento natural afectó el valor de la propiedad. El 63.6% de los encuestados señala que el valor de su propiedad ha disminuido.

Índice de vulnerabilidad

El modelo de vulnerabilidad de perder la vivienda, el trabajo o los ingresos depende de la estructura del techo, del total de la población en el hogar, la localización, nivel de ingresos, entre otras. El ingreso recoge la influencia de la educación, la edad, la zona de trabajo, la categoría laboral, entre otras variables.

El siguiente modelo incluye una variable que recoge la influencia de una variable que agrupa las características del techo y de la pared creada con el método de componentes principales (pc1_vivienda). Esa variable representa la fragilidad de la vivienda (e.g., construida con paredes de madera y techo de zinc.) También incluye la variable ingreso per cápita del hogar. Para el caso del índice a nivel de hogares con la muestra suministrada por el SIUBEN se estimará el ingreso en una primera etapa mediante una ecuación de Mincer, que se calculará utilizando la Encuesta Nacional de Fuerza de Trabajo del Banco Central de la República Dominicana de octubre de 2013. Esta última incluirá variables que pueden asociarse a la vulnerabilidad de perder el trabajo (e.g., si está en una zona predominantemente agropecuaria o si es un cuentapropista.) Las variables dicotómicas de inundación_lenta e inundación_rápida son dos proxy a la cercanía de la vivienda a ríos, cañadas y lago.

```
. logit V casa pcl vivienda ingrepc0 inundacion rapida inundacion lenta
Iteration 0: \log likelihood = -154.08464
Iteration 1: log likelihood = -124.67371
Iteration 2: log likelihood = -123.93445
Iteration 3: \log likelihood = -123.9316
Iteration 4: log likelihood = -123.9316
Logistic regression
                                                 Number of obs =
                                                                        237
                                                 LR chi2(4) = 60.31
Prob > chi2 = 0.0000
Log likelihood = -123.9316
                                                 Pseudo R2
                                                                       0.1957
         V_casa Coef. Std. Err. z P>|z| [95% Conf. Interval]
                    .4782488 .1362695 3.51 0.000 .2111654 .7453322
   pc1 vivienda
                    -.0000884 .0000374 -2.37 0.018 -.0001617 -.0000152
        ingrepc0
inundacion_rapida 1.079559 .3534724 3.05 0.002 .3867661 inundacion_lenta 1.364843 .3423469 3.99 0.000 .693855
                                                                          1.772352
                                                                        2.03583
                                                              .693855
           _cons -.1365449 .226096 -0.60 0.546 -.5796849 .306595
```

El siguiente modelo incluye las variables techo y paredes por separado. La variable techo toma valor de 1 si es de zinc u otro material frágil y valor de 0 si es de concreto. La variable paredes toma valor de 1 si es de madera y otro material frágil y valor de 0 si es de bloques de concreto. Se observa que influyen significativamente sobre la vulnerabilidad ambiental. Una vivienda con techo y paredes de zinc y madera, respectivamente, es más vulnerable que otra que no utilizan concreto. El modelo también arroja que a mayor cercanía de los ríos, cañadas y arroyos mayor vulnerabilidad.

```
. logit V_casa techo paredes ingrepc0 inundacion_lenta inundacion_rapida, nolog
                                                                 Number of obs =
Logistic regression
                                                                                                 237
                                                                LR chi2(5) = 60.44

Prob > chi2 = 0.0000

Pseudo R2 = 0.1961
Log likelihood = -123.86465
                          Coef. Std. Err. z \rightarrow |z| [95% Conf. Interval]
             V_casa
                          1.047257 .4409784 2.37
.5804449 .3368798 1.72
-.0000874 .000037 -2.36
1.366673 .3428604 3.99
                                                                    0.018 .1829547
0.085 -.0798274
                                                                                                 1.911558
              techo
             paredes
                                                                                                1.240717
                                                          3.99 0.000 .694679 2.038667
3.03 0.002 .3778284 1.766975
-2.91 0.004 -2.122665 -.4126565
           ingrepc0
inundacion_lenta
                          1.072402 .3543807
-1.267661 .4362347
inundacion_rapida
                                                        -2.91
               _cons
```

En el siguiente modelo se construyó una variable, "inundable", que recoge simultáneamente la posibilidad de inundación lenta e inundación rápida. Los resultados muestran que los coeficientes son estadísticamente significativos. En el caso de paredes no es significativo individualmente, pero sí lo es junto a la variable techo.

. logit V_casa	techo pared	d ingrepc0 i	nundable,	robust	nolog		
Logistic regre	ession			Numbe:	r of obs	5 =	237
				Wald	chi2(4)	=	46.73
				Prob :	> chi2	=	0.0000
Log pseudolike	elihood = -127	7.08652		Pseud	R2	=	0.1752
		Robust					
V_casa	Coef.	Std. Err.	Z	P> z	[95%	Conf.	Interval]
techo	1.133869	.4048616	2.80	0.005	.3403	3551	1.927383
paredes	.4992328	.3338436	1.50	0.135	1550	0886	1.153554
ingrepc0	0000768	.0000365	-2.10	0.035	0001	1483	-5.25e-06
inundable	1.803901	.3117142	5.79	0.000	1.192	2952	2.414849
_cons	-1.345616	.3964909	-3.39	0.001	-2.122	2724	5685083

La edad del jefe del hogar no resultó ser significativa. No obstante, este efecto se cuantificará a través de la ecuación de Mincer que se estimará con datos de la Encuesta Nacional de Fuerza de Trabajo y que se utilizará para estimar los ingresos de los hogares en la muestra suministrada por el SIUBEN.

. logit V_casa pc1_vivienda ingrepc0 inundacion_rapida inundacion_lenta edad edad2, nolog								
Logistic regression Number of obs = 236								
			LI	R chi2(6)		62.99		
			Pi	rob > chi		0.0000		
Log likelihood = -1	.22.14935		Ps	seudo R2	= (0.2050		
V_casa	Coef.	Std. Err.	z	P> z	[95% Conf.	. Interval]		
pcl_vivienda	.500531	.1386728	3.61	0.000	.2287373	.7723247		
ingrepc0	0000905	.0000376	-2.41	0.016	0001642	0000168		
inundacion_rapida	1.11384	.3581697	3.11	0.002	.4118406	1.81584		
inundacion_lenta	1.402339	.3482833	4.03	0.000	.7197162	2.084962		
edad	.0948218	.0527675	1.80	0.072	0086006	.1982441		
edad2	0008538	.0004986	-1.71	0.087	001831	.0001233		
_cons	-2.507813	1.31896	-1.90	0.057	-5.092927	.0773008		

La variable nivel de educación no influye directamente, pero tiene influencia indirecta a través de la ecuación de Mincer.

. logit V_casa pc1_vivienda ingrepc0 inundacion_rapida inundacion_lenta i.nivel_educ, nolog Logistic regression Number of obs = 59.36 LR chi2(6) Prob > chi2 0.0000 Log likelihood = -122.63458 Coef. Std. Err. z P>|z| [95% Conf. Interval] V casa 3.37 .000037 -2 °° pc1_vivienda .4620735 .1371577 0 001 .1932495 ingrepc0 -.0000843 -2.28 0.023 -.0001569 -.0000117 -.0000843 .000037 -2.28 1.050696 .3554962 2.96 1.366644 .3430457 3.98 inundacion_rapida 2.96 0.003 inundacion_lenta nivel educ .2049217 .4285126 0.48 0.632 -.1875772 .5431934 -0.35 0.730 Secundaria Universitaria -.1793108 .2433189 -0.74 0.461 -.6562071 .2975856

El género no tiene una influencia significativa de manera directa; sin embargo, de manera indirecta lo tiene a través de la ecuación de Mincer a nivel nacional.

. logit V_casa pc1_vivienda ingrepc0 inundacion_rapida inundacion_lenta mujer, nolog Logistic regression Number of obs = LR chi2(5) 60.61 Prob > chi2 0.0000 Log likelihood = -123.78186 Pseudo R2 0.1967 V casa Coef. Std. Err. z P>|z| [95% Conf. Interval] pcl_vivienda .4689182 .1374579 3.41 0.001 .1995056 .7383308 -2.41 -.0000906 .0000376 0.016 -.0001643 -.0000168 ingrepc0 3.03 0.002 4.00 0.000 inundacion_rapida 1.073097 .3539261 .3794144 1.766779 1.373335 .3429228 inundacion_lenta .7012186 2.045451 -.172695 .3156175 -0.55 0.584 -.7912939 .4459039 -.0475548 .2784021 -0.17 0.864 -.5932129 .4981033 mujer

Cuantificación del índice de vulnerabilidad ambiental

Con el siguiente modelo econométrico se estima el índice de vulnerabilidad ambiental para cada hogar utilizando la muestra levantada en las provincias circundantes al Lago Enriquillo. El índice va de 0 (menos vulnerable) a 1 (más vulnerable.)

V_casa	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
pc1_vivienda	.4782488	.1362695	3.51	0.000	.2111654	.7453322
ingrepc0	0000884	.0000374	-2.37	0.018	0001617	0000152
inundacion_rapida	1.079559	.3534724	3.05	0.002	.3867661	1.772352
inundacion_lenta	1.364843	.3423469	3.99	0.000	.693855	2.03583
_cons	1365449	.226096	-0.60	0.546	5796849	.306595

La distribución de los valores se presenta en la siguiente tabla.

. sum p_V_casa, detail

	Pr(V_casa)						
	Percentiles	Smallest					
1%	.1342161	.0945778					
5%	.2013379	.1105439					
10%	.3459869	.1342161	Obs	238			
25%	.4246197	.1472255	Sum of Wgt.	238			
50%	.6647353		Mean	.6462783			
		Largest	Std. Dev.	.2332001			
75%	.8719356	.9425941					
90%	.934983	.9425941	Variance	.0543823			
95%	.9401549	.9428592	Skewness	4415598			
99%	.9425941	.9429348	Kurtosis	2.073409			

La provincia de Bahoruco tiene un índice de vulnerabilidad (0.68) superior al de Independencia (0.64).

. tab Desc_Provincia, sum(p_V_casa)

Nombre de Provincia ONE 2002	Summary of Pr(V_casa) Mean Std. Dev. Freq.
BAORUCO INDEPENDENCIA	.68155081 .25277857 29 .64138407 .23057621 209
Total	.64627834 .23320012 238

Por zonas se observa que la rural (0.68) tiene un índice ligeramente superior a la urbana (0.62).

. tab Zona, sum(p_V_casa)

4 - Zona		ry of Pr(V_casa) Std. Dev.	Freq.
Rural Urbana	.67972075 .62204471	.24303193 .22357961	100 138
Total	.64627834	.23320012	238

El municipio de Jimaní (0.87) es el que tiene mayor vulnerabilidad y el municipio de Postrer Río (0.589) las que tienen mayor vulnerabilidad de perder la vivienda.

. tab Desc_Municipio2002, sum(p_V_casa)

	Summa	a)	
Nombre de Municipio ONE 2002	Mean	Std. Dev.	Freq.
DUVERGE	.71254284	.20861075	31
JIMANI	.86699538	.11907928	25
LA DESCUBIERTA	.6171116	.2704763	7
LOS RIOS (D.M.)	.60895784	.28484225	17
POSTRER RIO	.58880669	.22184773	146
VILLA JARAGUA	.78439086	.1579574	12
Total	.64627834	.23320012	238

Por sección se observa que Boca de Cachón (0.87) es la que tiene mayor vulnerabilidad. Los Bolos (0.48) tiene la menor vulnerabilidad.

. tab Desc_Seccion2002, sum(p_V_casa)

Nombre de Seccion ONE 2002		y of Pr(V_casa) Std. Dev.	Freq.
BARTOLOME	.6171116	.2704763	7
BOCA DE CACHON	.86699538	.11907928	25
COLONIA MIXTA	.56603217	0	1
LAS CLAVELLINAS	.60895784	.28484225	17
LOS BOLOS	.4768149	.18038546	20
VENGAN A VER	.71742653	.21036687	30
ZONA URBANA	.62204471	.22357961	138
Total	.64627834	.23320012	238

A nivel de barrios. El barrio de Boca de Cachón (0.87) tiene la mayor vulnerabilidad y los Bolos (0.46) la menor.

. tab Desc_Barrio2002, sum(p_V_casa)

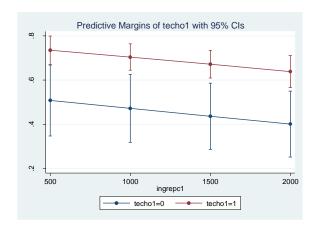
	Summa	ry of Pr(V ca	ısa)
Nombre de Barrio ONE 2002	Mean	Std. Dev.	Freq.
BARRIO NUEVO	.47872958	.1492687	9
BARTOLOME	.6171116	.2704763	7
BOCA DE CACHON	.86699538	.11907928	25
CAIMANI	.68194011	.15408424	14
CENTRO DEL PUEBLO	.56111044	.23931579	24
COLONIA MIXTA	.56603217	0	1
EL OTRO LADO DEL RIO	.80318968	.1321609	15
LA MADRE	.78439086	.1579574	12
LAS AUYAMAS	.55514419	0	1
LAS BAITOAS	.72371976	.1961245	12
LAS CLAVELLINAS	.60895784	.28484225	17
LOS BOLOS	.4574803	.1977756	16
LOS RANCHITOS	.55382299	.02832066	3
MOGOTE	.59540705	.21768782	32
TIERRA PRIETA	.56269468	.24016643	32
VENGAN A VER	.71323105	.22484862	18
Total	.64627834	.23320012	238

Impacto de la vulnerabilidad sobre los ingresos y pobreza

La vulnerabilidad afecta la capacidad de generación de ingresos y, por lo tanto, eleva la incidencia de la pobreza. A continuación se muestra la diferencia en la variación de ingresos provocado por ser o no ser afectado por las inundaciones del Lago Enriquillo.

. ttest dingrepc, by(afectado_lago) unequal

Two-sample t test with unequal variances


Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
0	92 145	-969.0467 -1835.254	212.2186 428.133	2035.529 5155.404	-1390.593 -2681.491	-547.5006 -989.0166
combined	237	-1499.005	275.5418	4241.912	-2041.84	-956.1689
diff		866.2069	477.8437		-75.93963	1808.354
diff =	= mean(0) = 0	- mean(1)	Satterthwai	te's degrees	t of freedom	
	iff < 0 = 0.9643	Pr(Ha: diff !=			iff > 0) = 0.0357

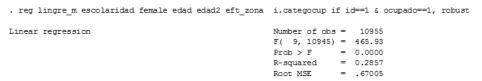
Simulación de vulnerabilidad ambiental

Esta simulación se construyó en función del techo de la vivienda y el nivel de ingreso. Observe la reducción de la vulnerabilidad a mayor nivel de ingreso. Note que dado el nivel de ingreso, aumenta la vulnerabilidad si el techo de la vivienda no es de concreto (i.e., es de zinc).

	1	Delta-method				
	Margin	Std. Err.	Z	P> z	[95% Conf.	Interval]
_at#techol						
1 0	.5078946	.0817911	6.21	0.000	.3475871	.6682022
1 1	.7350899	.0328699	22.36	0.000	.670666	.7995137
2 0	.4719459	.0783762	6.02	0.000	.3183313	.6255605
2 1	.7044464	.0305756	23.04	0.000	.6445194	.7643734
3 0	.4362466	.0764818	5.70	0.000	.2863451	.5861482
3 1	.6722768	.0317905	21.15	0.000	.6099686	.734585
4 0	.4010632	.0761558	5.27	0.000	.2518006	.5503258
4 1	.6388174	.0370856	17.23	0.000	.566131	.7115038

. marginsplot

Cuantificación del índice de vulnerabilidad a nivel de hogares para todo el territorio nacional


Se sustituyen las variables seleccionadas de la base del SIUBEN en el modelo. Esto permitirá cuantificar el índice de vulnerabilidad ambiental a nivel de hogar para todo el país.

Muestra del SIUBEN

La muestra suministrada por el SIUBEN es 259,260 hogares, abarcando 848,346 personas.

Ecuación de Mincer

Se estimó una ecuación de Mincer utilizando la base de datos de la Encuesta Nacional de Fuerza de Trabajo de octubre de 2013. El objetivo es obtener una función de ingreso laboral que permita estimar, dado el estado ocupacional de la muestra del SIUBEN, el ingreso de los hogares.

lingre_m	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
escolaridad	.0499014	.0013082	38.15	0.000	.0473372	.0524657
female	3870067	.0156284	-24.76	0.000	4176412	3563723
edad	.0618296	.0025768	23.99	0.000	.0567786	.0668807
edad2	0006289	.0000298	-21.08	0.000	0006874	0005704
eft_zona	1316646	.0137884	-9.55	0.000	1586925	1046368
categocup						
Asalariado público	0359957	.0196878	-1.83	0.068	0745873	.0025959
Cuenta propia	0757591	.0153135	-4.95	0.000	1057763	0457419
Empleador	.7118634	.0438466	16.24	0.000	.6259162	.7978106
Otro	3593656	.027581	-13.03	0.000	4134293	3053019
_cons	7.462499	.0538952	138.46	0.000	7.356855	7.568144

Modelo de vulnerabilidad

El modelo de vulnerabilidad que se utilizará para aplicarlo a la muestra de hogares de la base del SIUBEN incluye como variables explicativas la calidad del techo y las paredes de la vivienda; el nivel de ingreso per cápita del hogar; la propensidad a ser impactada por una inundación.

. logit V_cas	a techo pare	d ingrepc0 i	nundable,	robust 1	nolog		
Logistic regr		r of obs	=	237			
				Wald o	chi2(4)	=	46.73
				Prob :	> chi2	=	0.0000
Log pseudolik	elihood = -12	7.08652		Pseudo	c R2	=	0.1752
		Robust					
V_casa	Coef.	Std. Err.	z	P> z	[95%	Conf.	Interval]
techo	1.133869	.4048616	2.80	0.005	.3403	551	1.927383
techo paredes	1.133869 .4992328	.4048616	2.80 1.50	0.005	.3403		1.927383 1.153554
						886	
paredes	.4992328	.3338436	1.50	0.135	1550	886 483	1.153554

Resultados

A continuación se presenta el índice de vulnerabilidad estimada en base a los indicadores de los hogares seleccionados en la muestra del SIUBEN. La media del índice es de 0.52.

	Indice_V				
	Percentiles	Smallest			
1%	.1271483	.0120785			
5%	.1596269	.0218937			
10%	.1769509	.0225555	Obs	848346	
25%	.3739896	.0225555	Sum of Wgt.	848346	
50%	.5217231		Mean	.5256638	
		Largest	Std. Dev.	.2436243	
75%	.7972337	.8889822			
90%	.8684223	.8889822	Variance	.0593528	
95%	.8792772	.8889822	Skewness	.0091012	
99%	.8889822	.8889822	Kurtosis	1.808192	

Existe una relación inversa entre el ICV y el índice de vulnerabilidad ambiental. Los hogares categorías pobres I y pobres II tienen un índice promedio de vulnerabilidad ambiental de 0.66 y 0.59, respectivamente. Los hogares menos pobres tienen menor vulnerabilidad ambiental.

Categoria_I	Summ	ary of Indice_V	Freq.
CV	Mean	Std. Dev.	
ICV 1	.65226828	.20130332	31338
ICV 2	.59008056	.22095207	108427
ICV 3	.45460618	.23706623	99020
ICV 4	.28769364	.18771994	20475
Total	.52197439	.24417788	259260

La zona rural es la más vulnerable. Su índice promedio es de 0.60, mientras que el de la zona urbana es de 0.51. La Metropolitana es la que tiene menor vulnerabilidad ambiental.

Zona_Geografica	Summa Mean	ary of Indice_V Std. Dev.	Freq.
Zona Metropolit Zona Rural Zona Urbana	.44927854 .60304189 .51181284	.24540772 .22360491 .24017568	74191 79733 105336
Total	.52197439	.24417788	259260

La provincia de Santo Domingo y el Distrito Nacional son las regiones con menor vulnerabilidad ambiental. Las regiones Nordeste, El Valle, Noroeste y Central son las que tienen mayor vulnerabilidad.

	Summa	ary of Indice_V	
Desc_Regional	Mean	Std. Dev.	Freq.
CENTRAL	.58136636	.23159061	23589
DISTRITO NACIO	.47862357	.25448929	24848
EL VALLE	.5863305	.22723696	15814
ENRIQUILL0	.55551823	.23091048	11704
ESTE	.44847361	.22789757	30619
NORCENTRAL	.55478486	.23979759	40086
NORDESTE	.60736525	.23228776	21336
NOROESTE	.58237647	.21538378	14270
SANTO DOMINGO	.45457937	.24148485	50443
VALDESIA	.5188449	.24845067	26551
Total	.52197439	.24417788	259260

Las provincias más vulnerables son Elías Piña, Hermanas Mirabal, Espaillat, Sánchez Ramírez y Dajabón. Las menos vulnerables son La Romana, Pedernales, San Pedro de Macorís, Distrito Nacional y provincia Santo Domingo.

		ary of Indice	_
Des_Prov_10	Mean	Std. Dev.	Freq.
ALTAGRACIA	.49925358	.25480194	6307
AZUA	.55426026	.2265397	6064
BAHORUCO	.54445598	.20930843	3170
BARAHONA	.57049779	.2396381	6283
DAJABON	.6216984	.21967639	2319
DISTRITO NACIONAL	.42524293	.24622692	17901
DUARTE	.60264842	.23721564	9923
EL SEIBO	.57270249	.23239811	3097
ELÍAS PIÑA	.64914979	.21644146	1581
ESPAILLAT	.62668199	.22619165	7547
HATO MAYOR	.56346408	.23294984	3154
HERMANAS MIRABAL	.64896255	.21836214	3250
INDEPENDENCIA	.57462321	.23238877	1573
LA ROMANA	.34456182	.17181065	7739
LA VEGA	.58530236	.22565482	12916
MARIA TRINIDADA SANC	.61291166	.22469655	4771
MONSEÑOR NOUEL	.52822514	.23743376	5401
MONTE CRISTI	.53462664	.19435086	3904
MONTE PLATA	.61542928	.22196927	7060
PEDERNALES	.42265592	.19279187	674
PERAVIA	.5432564	.23378321	5740
PUERTO PLATA	.57472515	.24269805	9985
SAMANÁ	.57185684	.23474928	3371
SAN CRISTÓBAL	.49970807	.25169136	18359
SAN JOSÉ DE OCOA	.60669167	.23334901	2459
SAN JUAN	.59803784	.2261551	8174
SAN PEDRO DE MACORIS	.42294438	.20125161	10322
SANCHEZ RAMIREZ	.62732407	.22954006	5344
SANTIAGO	.52161412	.23664394	22518
SANTIAGO RODRÍGUEZ	.61978633	.22835141	2044
SANTO DOMINGO	.4541954	.24138132	50303
VALVERDE	.58525853	.2161639	6007
Total	.52197439	.24417788	259260

A mayor escolaridad del jefe del hogar menor vulnerabilidad ambiental. Los analfabetos tienen mayor vulnerabilidad ambiental en comparación con aquellos que saben leer y escribir.

Sabe leer	Summ Mean	ary of Indice_V Std. Dev.	Freq.
No Si	.6009098 .50755958	.22372095	40034 219226
Total	.52197439	.24417788	259260

A mayor nivel educativo del jefe del hogar menor vulnerabilidad ambiental.

	Summary of Indice_V				
Nivel_educ	Mean	Std. Dev.	Freq.		
Ninguno	.60250709	.22312992	31271		
Pre-escol	.60105485	.22926482	622		
Primaria	.5469078	.23803328	126220		
Secundari	.4844512	.24428881	71817		
Universit	.42141549	.24328714	28235		
Post-grad	.35709921	.23078169	1095		
Total	.52197439	.24417788	259260		

El hogar con jefatura femenina tiene, en promedio, un índice de vulnerabilidad ambiental ligeramente inferior al hogar que encabeza el hombre.

36

jefa	Summ Mean	ary of Indice_V Std. Dev.	Freq.
Hombre Mujer	.52902436 .51803009	.24541222	93012 166248
Total	.52197439	.24417788	259260

Ese resultado se explica porque las mujeres tienen una mayor probabilidad de residir en viviendas con techo de concreto.

	jefa			
Desc_Techo	Hombre	Mujer	Total	
Asbesto-cemento	0.43	0.46	0.45	
Concreto	25.03	31.36	29.09	
Otro	0.09	0.12	0.11	
Tejas	0.02	0.00	0.01	
Yagua/Cana	0.61	0.17	0.33	
Zinc	73.82	67.89	70.02	
Total	100.00	100.00	100.00	

Las paredes de la vivienda con una jefa de hogar tiene también una mayor probabilidad de ser de bloque o de concreto.

	jefa			
Desc_Pared	Hombre	Mujer	Total	
Bloque o concreto,	60.03	69.71	66.24	
Madera	30.41	23.89	26.23	
Otro	2.20	1.49	1.75	
Tabla de palma	7.09	4.81	5.63	
Tejamanil/Yagua	0.26	0.09	0.15	
Total	100.00	100.00	100.00	

La mujer jefa de hogar tiende a vivir más lejos de ríos, cañadas y arroyos.

Cercanía_Rioarroyo_	jefa	a.	
o_cañada	Hombre	Mujer	Total
1 Kilometro	13.29	12.91	13.05
Menos de 1/2 Kilome	41.89	38.75	39.88
Más de 1 Kilometro	44.82	48.33	47.07
Total	100.00	100.00	100.00

La mujer jefa de hogar tiene mayor nivel educativo. La mujer tiene 7.6 años de estudio promedio y el hombre jefe de familia tiene 6.7 años.

	je		
Nivel_educativo	Hombre	Mujer	Total
Ninguno	14.04	10.95	12.06
Post-grado	0.36	0.46	0.42
Pre-escolar	0.27	0.23	0.24
Primaria	52.29	46.67	48.68
Secundaria	25.23	29.08	27.70
Universitaria	7.82	12.61	10.89
Total	100.00	100.00	100.00

El hogar con jefatura femenina tiene un nivel de ingreso per cápita mucho menor que el del hombre.

jefa	Summary Mean	of ingre_m_ Std. Dev.	h_pc Freq.
Hombre Mujer	3880.9864 2187.3391	3499.6799 2304.1803	93012 166248
Total	2794.9513	2908.3256	259260

Los hogares con jefe desempleado tienen la mayor vulnerabilidad ambiental.

Situación laboral	Sum Mean	-	Indice_V Dev.	Freq.
Desemplea Empleado	.53250326 .49642996		89728 64886	30559 106740
Total	.50445889	.246	83599	137299

Los hogares con jefes rentistas, pensionados y ocupados permanentemente tienen menor vulnerabilidad ambiental. Los hogares con jefes discapacitados, desempleados o que trabajan temporal u ocasionalmente son los que tienen mayor vulnerabilidad ambiental.

Desc_Situacion_Ocupaci	Summa		
onal	Mean	Std. Dev.	Freq.
Ama de casa	.5431344	.23897528	102812
Desempleado	.53250326	.24189728	30559
Discapacitado (a)	.56342772	.23746873	7487
Estudiante	.52034018	.24655309	5984
Ocupado permanenteme	.47205398	.24750045	61620
Otra	.5726772	.23623284	2332
Pensionado	.46577952	.23631295	3166
Rentista	.45781016	.24297473	180
Trabaja ocacionalmente	.5282063	.24377853	30836
Trabaja temporalmente	.53298779	.24429839	14284
Total	.52197439	.24417788	259260

Los hogares con jefes empleadores y asalariados son los que tienen menor vulnerabilidad ambiental.

Categoria	Summ	ary of Indice_V	7
ocupacional	Mean	Std. Dev.	Freq.
Asalariad	.46806023	.2465654	38232
Asalariad	.46172998	.24697776	15397
Cuenta pr	.52954644	.24416936	48240
Empleador	.44129605	.25819151	1528
Otro	.53651708	.23066673	1088
No remune	.52392331	.24658286	2255
Total	.49642996	.24764886	106740

Los hogares con mayor hacinamiento son los que tienen mayor vulnerabilidad ambiental.

Hacinamiento	Summa Mean	ry of Indice_V Std. Dev.	Freq.
De 2.0 a menos de De 2.5 a menos de Mayor o igual a 4.0 Menos de 2.0	.52740952 .54946042 .56771424 .50537845	.2428319 .23816574 .23311967 .24629665	50475 44675 19592 144518
Total	.52197439	.24417788	259260

Los hogares con pisos de tierra son los que tiene mayor vulnerabilidad. Los de granito, mármol y cerámica los menos vulnerables.

. tab Desc_Piso if Parent==1 , sum(Indice_V)

		Summa	ary of Indice	e_V
	Desc_Piso	Mean	Std. Dev.	Freq.
	Cemento/Mosaico	.52850368	.24144649	235673
Granito,	Mármol, Cerám	.33519414	.21245047	15093
	Madera	.64897133	.20017435	1080
	Otro	.5814898	.23622937	116
	Tierra	.67766587	.18758429	7298
	Total	.52197439	.24417788	259260

Los hogares cuya fuente de suministro de agua es el manantial, río o arroyo son los que tienen mayor vulnerabilidad ambiental.

	Summary of Indice V		
Fuente_Suministro_Agua	Mean Std	Dev.	Freq.
Camión tanque	.50979978 .23	825256	11108
Del Acueducto, Llave pública	.52103281 .24	220109	28139
Del Acueducto, dentro de la casa	.46115747 .24	579943	85894
Del Acueducto, en el patio de l	.54894012 .23	457913	102858
Lluvia /Tanque /Albije /Pozo	.57721776 .23	778846	22327
Manantial, río o arroyo	.70446859 .19	372224	6914
Otro	.57975349 .22	930072	2020
Total	.52197439 .24	417788	259260

Los hogares que utilizan letrina tienen mayor vulnerabilidad que las viviendas con inodoro.

Tipo_Sanita	Summ	ary of Indice_'	V
rio	Mean	Std. Dev.	Freq.
Inodoro	.44910566	.24128504	153001
Letrina	.62566733	.20715583	93599
No tiene	.63598961	.20850193	12660
Total	.52197439	.24417788	259260

Los hogares que tiran la basura en el patio y que la queman son los que tienen mayor vulnerabilidad ambiental.

	Summary of Indice_V		
Método_Recolección_Basura	Mean	Std. Dev.	Freq.
La queman	.62367772	.21243524	40479
La recoge el ayuntamiento	.49334698	.24311967	201645
La recoge una empresa privada	.42911075	.24434682	1026
La tiran en el patio, solar o c	.65057942	.22184231	14620
Otro	.43526183	.24027749	1490
Total	.52197439	.24417788	259260

Los hogares que utilizan carbón para cocinar son los más vulnerables.

Combustible	Summary of Indice_V
_Cocina	Mean Std. Dev. Freq.
Carbón, L	.6339055 .20998295 28047
Electrici	.50261576 .24264801 266
Gas Propano	.50702577 .24451831 221578
No Cocina	.54173131 .24296372 9060
Otro	.51908106 .24380166 309
Total	.52197439 .24417788 259260

5. Recomendaciones

La República Dominicana puede reducir significativamente la vulnerabilidad ambiental de sus hogares. El primer paso debe ser incluir en la definición de las políticas públicas el objetivo de minimizar la vulnerabilidad ambiental. Es posible mejorar la capacidad de los hogares y comunidades para resistir, enfrentar y recuperarse de los desastres naturales. El acceso a activos físicos, económicos, humano y recursos naturales puede ayudar a la población a enfrentar esos fenómenos.

La inversión en educación es el principal instrumento para reducir la vulnerabilidad ante choques naturales. Las personas más educadas son las que, en promedio, perciben mayores ingresos, lo cual les permite adquirir activos de mayor calidad y tomar decisiones que reduzcan su vulnerabilidad. Es poco probable que una persona educada establezca su vivienda en una zona propensa a ser inundada por la crecida de los ríos. Y si existe alguna probabilidad de que se inunde, la persona educada tendría el conocimiento y los ingresos suficientes para adquirir un seguro que le permita trasladar ese riesgo hacia la compañía aseguradora.

Una política de mejoramiento de la calidad de la vivienda (e.g., paredes de bloques y techo de concreto) reduciría la vulnerabilidad ante los fenómenos ambientales. El modelo de vulnerabilidad revela que los hogares que habitan en viviendas frágiles tienen una mayor probabilidad de sufrir severos daños. Una política que ayude a fortalecer la estructura de la vivienda y alejarla de las zonas inundables reduciría la vulnerabilidad de los hogares.

La ejecución de políticas económicas que estimulen la creación de empleo también sería favorable. El empleo significa mayores ingresos de los hogares y, en consecuencia, mayor capacidad de construir viviendas menos frágiles.

El gobierno también debería establecer un programa de manejo de desastres naturales para facilitar la recuperación de las familias más pobres después de que ocurra un evento natural extremo. Ese programa elevaría la resiliencia de la población más vulnerable en la República Dominicana.

Bibliografía

Adger, N. et al. (2004), "New indicators of vulnerability and adaptive capacity." Tyndall Centre Technical Report 7.

Adger, N. (2006), "Vulnerability." Global Environmental Change. Elsevier.

Bara, C. (2010), "Social Vulnerability to Disasters." CRN Report. Center for Security Studies. Zurich.

Becker, G. (2005). "The Economics of Disaster Management." Wall Street Journal, January 4, p. A12.

Birkmann, J. (2007), "Risk and vulnerability indicators at different scales: Applicability, usefulness and policy implications." Environmental Hazards, 7.

Birknmann, J. y B. Wisner (2006), "Measuring the un-measurable. The challenge of vulnerability. Source, No. 5/2006. United Nations University—Institute for Environment and Human Security, Bonn. /http://www.ehs.unu.edu/file.php?id=212S.

Cardona, O.D. (2005), Indicators of disaster risk and risk management— main technical report. IDB/IDEA Program of Indicators for Disaster Risk Management, National University of Colombia, Manizales. /http://idea.unalmzl.edu.co

Cardona, O.D. (2006), A system of indicators for disaster risk management in the Americas. In: Birkmann, J. (Ed.), Measuring Vulnerability to Natural Hazards—Towards Disaster Resilient Societies. UNUPress, Tokyo, New York, Paris.

Cardona, O.D. (2010) Indicators of Disaster Risk and Risk Management – Program for Latin America and the Caribbean: Summary Report. Evaluación de Riesgos Naturales - Latino America, ERN-AL, Inter-American Development Bank, Washington, DC.

CEPAL (2005), "Comparison of the Socio-Economic Impacts of Natural Disasters on Caribbean Societies in 2004." CEPAL, Chile.

Cutter, S.L. (1996), "Vulnerability to environmental hazards." Progress in Human Geography 20.

Cutter, S.L., B.J. Boruff y W.L. Shirley (2003), "Social vulnerability to environmental hazards." Social Science Quaterly 84.

Dilley, M., Chen, R.S., Deichmann, U., Lerner-Lam, A., Arnold, M., 2005. Natural Disaster Hotspots. A Global Risk Analysis. The World Bank, Hazard Management Unit, Washington, DC.

López-Marrero, T. y B. Wisner (2012), "Not in the Same Boat: Disasters and Differential Vulnerability in the Insular Caribbean." Caribbean Studies.

IPCC (2012), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Geneva.

IPCC (2014), Intergovernmental Panel on Climate Change. Summary for Policy Makers. World Meteorological Organization. Geneva.

Izzo, M., L. Rathe y D. Arias (2013), Puntos Críticos para la Vulnerabilidad a la Variabilidad y Cambio Climático en la República Dominicana y su Adaptación al mismo. Instituto Dominicano de Desarrollo Integral. República Dominicana.

Rappaport, E. y J. Fernández-Partagas (1995), "The Deadliest Atllantic Tropical Cyclones 1492-1996." NOOA Technical Memorandum NWS HNC 47.

Rygel, L., D. O'Sullivan y B. Yarnal (2006), "A Method for Constructing a Social Vulnerability Index: An Application to Hurricane Storm Surges in a Developed Country." Mitigation and Adaptation Strategies for Global Change. Springer.

Thomas, J. E. (2011), "Vientos del huracán David en la memoria Dominicana." Listín Diario. 31 de agosto de 2011.

United Nations Development Programme (UNDP), 2004. Reducing disaster risk. A challenge for development. A Global Report, UNDP—Bureau for Crisis Prevention and Recovery (BRCP), New York. /http://www.undp.org/bcpr/disred/rdr.htmS

Wisner, B., J.C. Gaillard, y I. Kelman (2012), "Framing Disasters: Theories and Stories Seeking to Understand Hazards, Vulnerability and Risk." Pp. 18-33 en The Routledge Handbook of Hazards and Disaster Risk Reduction, editado por Ben Wisner, J.C. Gaillard, y Ilan Kelman. London: Routledge.