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Abstract: The Sustainable Development Goals (SDGs) of the United Nations Organization pursue the

provision of affordable and quality energy for all human beings, which is why the correct planning

of Energy Supply Systems (ESS) in communities that present levels of energy poverty, that is, the

impossibility to satisfy their minimum needs for energy services. This work proposes a methodology

to evaluate the contribution to development by the adequate provision of the demand of ESS in

remote communities through the approach of Sustainable Livelihoods (SLs). The methodology

starts from the initial evaluation of the sustainable livelihoods or capitals of the communities and

the analysis of their interaction. Then, a capital improvement process is proposed by selecting the

indicator values that optimize the model in each period, through an evolutionary algorithm that

guarantees that the indicators evolve to a rich scenario as a result of planning to evolve the key

variables based on a quantitative model with the indicators that empower evaluating the contribution

of the ESS to them.

Keywords: sustainable livelihoods; energy management; renewable energy; energy systems optimization;

evolutionary algorithm

1. Introduction

The sustainable development goals (SDGs) of the United Nations Organization have
set as objective-7 (SDG 7), access to sustainable and quality energy for all. That is why
correct long, medium, and short-term planning of energy supply systems in remote com-
munities is necessary [1,2]. The gap between energy planning models and community
development planning mechanisms justifies the need for models that integrate energy
demand planning and the criteria of the Sustainable Livelihoods approach (SLA) to help in
the decision-making in the development planning of remote communities in relation to the
evolution of its energy demand [3].

The concept of Energy Poverty (EP), measures the possibility that a population has
to satisfy their minimum needs for energy services [4]. This concept can be applied to
monitoring studies of access to quality energy services in communities or regions [5], as
presented by a study by the National Energy Commission (CNE) of the Dominican Republic
that establishes the energy-poor provinces [6]. EP in communities must be reduced not
only to achieve SDG 7, related to affordable energy but also as a way to promote greater
economic development in remote communities [7]. In other words, the energy supply
systems are very important to carry out the development in communities with EP [8].
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The evaluation of EP in remote communities allows it to be articulated with Sustainable
Livelihoods (SLs) [9]. This articulation allows evaluating not only how communities can
meet their energy needs, but also the correct supply of energy demand in the long, medium,
and short term, which contributes to the integral development of communities. In order
for the SLs to be useful in contributing to the reduction of energy poverty in remote
communities, a system of indicators must be established that allows correlating demand
and community assets [10]. As part of the procedure for the development of the SLs,
the indicators of the system will be selected by key actors, as a way of adapting it to the
characteristics of the evaluated community, to contribute to the reduction of poverty under
the specific conditions of each one.

Microgrids of Renewables energy sources and new energy business models through
community cooperativism can help to improve communities’ development and increase
the interest of the electrical companies in the deployment of the electrical grid [11].

The sustainable livelihoods approach has been proposed by the Food and Agriculture
Organization of the United Nations (FAO) as a tool for the implementation of rural develop-
ment projects [12]. However, the research consulted, which focuses on the development of
remote communities based on an adequate supply of energy, does not allow for evaluating
the evolution of development over time, nor with the evolution of energy demand [3].

Pereyra-Mariñez et al. (2022), have shown the analysis of different models for energy
planning and the evaluation of sustainable livelihoods in remote communities [3]. This
research argues that the current energy planning models do not include elements that
involve indicators to measure the development of the capitals that make up the SLs.
Therefore, the objective of this article is to develop a model that considers the necessary
elements to achieve the integration of long-term energy planning variables and SLs. On the
other hand, A.Vallejo-Díaz et al. (2022) have presented research on small-scale wind energy
to contribute to decarbonization in a decentralized grid [13]. This technology is suitable
for harnessing kinetic energy in the wind in remote communities. In addition, that work
introduced the approach of energy resilience for distributed energy systems against threats
from atmospheric events. Recently, E. Garabitos Lara et al. (2023) presented an evaluation
of the economic feasibility of the use of a photovoltaic system for distributed energy [14],
however, the framework of the work shows how competitive benefits can be obtained, such
as internal rate of return of 9% and payback time of 4.46 years, with scenarios in the cities,
and even better in rural areas, where the levelized costs of energy are higher according to E.
Mulenga et al. (2023) [15].

Considering the depth of the literature analysis on the integration of the SLA with
Long-Term energy planning, this work proposes:

• A methodology that allows guiding decision-making for the development and evolu-
tion of the energy supply system in the long term for remote communities.

• A process of optimization of the indicators that make up the capitals of the community,
taking them from a poor scenario to a rich one as a result and guaranteeing harmonious
and sustainable growth between the capitals.

• The integration of long-term energy planning variables and SLs.

The organization of the article is as follows: Section 2 presents a systematic review of
the literature about SLA, the assets pentagon calculation, and the methods for simulation
algorithm and polynomial regression. Section 3 develops the methodology that was applied
to integrate the SLA with lorn-term energy planning variables. Section 4 analyzes the results
obtained from the simulation. Section 5. discusses the findings from the simulation model
results. Finally, in Section 6 the conclusions and future work on the findings are shown.

2. Systematic Literature Review

Energy projects in remote communities that make it possible to achieve the SDGs
require the development of methodologies for forecasting energy demand, the availability
of renewable energy carriers, guaranteeing minimum costs of the energy served, achiev-
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ing high levels of social acceptance, maximum use of renewable resources and a lower
environmental cost [16].

2.1. Sustainable Livelihoods Approach

The Sustainable Livelihoods Approach (SLs) measures the capacities or assets that
communities have for the development of their lives [17]. A livelihood is sustainable when
it is resilient to sudden shocks and maintains its capabilities and assets both now and
in the future without undermining its natural resource bases. The capacities or assets
of livelihoods can be classified into five types of capital according to M. Barman et al.
(2017) [18]. A review of the capital used by authors of development projects in remote
communities has been carried out by Pereyra-Mariñez et al. (2022) [3]:

- Human Capital: characterized among others by the levels of health, nutrition, educa-
tion, and knowledge.

- Social Capital: they are networks and connections between individuals with shared
interests, forms of social participation, and relationships of trust and reciprocity.

- Natural Capital: these are the natural resources useful in terms of livelihood.
- Physical Capital: these are the infrastructures and equipment that respond to the basic

and productive needs of the population.
- Financial Capital: These are the financial resources that populations use to achieve

their livelihood objectives.

Chen et al. (2013), have presented four stages for the evaluation of the capitals of
a community as follows: (1) Identify the attributes and key variables. (2) Select to set
the weights of the selected indicators according to your experience. (3) Rate the options
with reference to a scale of scores regarding their relative importance, in terms of different
weights, such as 0–0.33, 0.34–0.66, and 0.67–1.00; deficient, medium, and well, respectively.
(4) Calculate the weighted scores [19].

Fang et al. (2014), have developed a methodology combining the SLs capital and
the questionnaire method. The main variables correlated are selected. To measure the
contribution of different capitals in livelihood strategies, it is important to standardize each
variable based on Equations (1) and (2) [20].

Zi =
xi − x

S
(1)

Ci = ∑ WiZi (2)

where, Ci is the estimated value of livelihood capital (i = 1, 2, 3, 4, 5), Wi indicates the
weight of the ith observation and Zi represents the normalized value, as well. Table 1
presents the indicators proposed according to the level of relationship with the energy
demand. Where WB means World Bank, UNDP means United Nations Development
Program and DFID means Department for International Development.

Table 1. Energy-related indicators, presented by Pereyra-Mariñez et al. (2022) [3].

Capitals and Indicators Acronym WB DFID UNDP Total

Human capital CH 1 3 4

The economically active population (%) CHI1 1 1

Occupancy rate CHI2 1 1

Scholarship CHI3 1 1

Life expectancy CHI4 1 1

Family size (According to Organization for Economic Cooperation and
Development (OECD).)

CHI5
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Table 1. Cont.

Capitals and Indicators Acronym WB DFID UNDP Total

Labor productivity (According to Organization for Economic Cooperation
and Development (OECD).)

CHI6

Social capital CS 4 1 5

Community Participation Level CSI1 1 1

Collective representation CSI2 1 1

Leadership CSI3 1 1

Participation in decision-making CSI4 1 1

Climate information services CSI5 1 1

Financial capital CF 8 1 9

Local GDP/hab (is taken from the International Monetary Fund (IMF).) CFI1

Access to credit CFI2 1 1

Household income CFI3 1 1

Social help CFI4 1 1

Arrival of tourists CFI5 1 1

Grid electricity cost CFI6 1 1

Spending on energy sources CFI7 1 1

Remittances CFI8 1 1

Investment Capital CFI9 1 1

Savings CFI10 1 1

Physical capital CP 7 1 2 10

Access to information CPI1 1 1

Access to energy CPI2 1 1

Energy consumption per inhabitant CPI3 1 1

Self-coverage of the Energy Demand CPI4 1 1

Use of renewable energies CPI5 1 1

Transport infrastructure CPI6 1 1

Carrier penetration Renewable energy CPI7 1 1

Grid reliability CPI8 1 1

Proximity to the grid of the community interconnected system CPI9 1 1

Access to water CPI10 1 1

Natural capital CN 1 7 8

Disponibility of Renewable Energy carriers CNI1 1 1

Air quality CNI2 1 1

Particles total CNI3 1 1

Net absorption CO2 CNI4

Available Water CNI5 1 1

Biodiversity CNI6 1 1

Forest cover area CNI7 1 1

Hydrographic basin management CNI8 1 1

Availability of water and aquatic resources CNI9 1 1

Total 17 6 13 36

Capitals and Indicators Acronym WB DFID UNDP Total
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Table 1. Cont.

Capitals and Indicators Acronym WB DFID UNDP Total

Human capital CH 1 3 4

The economically active population (%) CHI1 1 1

Occupancy rate CHI2 1 1

Scholarship CHI3 1 1

Life expectancy CHI4 1 1

Family size (According to Organization for Economic Cooperation and
Development (OECD).)

CHI5

Labor productivity (According to Organization for Economic Cooperation
and Development (OECD).)

CHI6

Social capital CS 4 1 5

Community Participation Level CSI1 1 1

Collective representation CSI2 1 1

Leadership CSI3 1 1

Participation in decision-making CSI4 1 1

Climate information services CSI5 1 1

Financial capital CF 8 1 9

Local GDP/hab (is taken from the International Monetary Fund (IMF).) CFI1

Access to credit CFI2 1 1

Household income CFI3 1 1

Social help CFI4 1 1

Arrival of tourists CFI5 1 1

Grid electricity cost CFI6 1 1

Spending on energy sources CFI7 1 1

Remittances CFI8 1 1

Investment Capital CFI9 1 1

Savings CFI10 1 1

Physical capital CP 7 1 2 10

Access to information CPI1 1 1

Access to energy CPI2 1 1

Energy consumption per inhabitant CPI3 1 1

Self-coverage of the Energy Demand CPI4 1 1

Use of renewable energies CPI5 1 1

Transport infrastructure CPI6 1 1

Carrier penetration Renewable energy CPI7 1 1

Grid reliability CPI8 1 1

Proximity to the grid of the community interconnected system CPI9 1 1

Access to water CPI10 1 1

Natural capital CN 1 7 8

Disponibility of Renewable Energy carriers CNI1 1 1

Air quality CNI2 1 1

Particles total CNI3 1 1

Net absorption CO2 CNI4
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Table 1. Cont.

Capitals and Indicators Acronym WB DFID UNDP Total

Available Water CNI5 1 1

Biodiversity CNI6 1 1

Forest cover area CNI7 1 1

Hydrographic basin management CNI8 1 1

Availability of water and aquatic resources CNI9 1 1

Total 17 6 13 36

2.2. Assets Pentagon

The assets pentagon is used to graphically represent the value of each of the capi-
tals [21]. Each capital can take on a value between 0 and 1. The capitals are independent,
although there is an interrelation that occurs through the variables and parameters that the
indicators that the capital shares. In the ideal case, a regular pentagon is obtained, however,
the capitals evolve forming irregular pentagons in which the area shape of this allows for
establishing the level of development reached by the study community.

In Figure 1 three assets pentagon scenarios are presented. In the poor scenario, a low
total area is observed with a level of more than half of natural capital and social capital,
while human, physical, and financial capital are much less than half. In the normal scenario,
the community has an increase in its human capital and this in turn is transformed into an
increase in financial and physical capital. In the wealth scenario, energy intervention projects
have influenced the increase to optimal levels of human capital and this in turn evolves to
the optimal level of other capitals, reaching the pentagon in a quasi-regular manner.

2.2. Assets Pentagon
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The area of the pentagon that is formed with the results of the capitals can be calculated
using Equation (3) which is called the Gaussian determinant [23]. The area of the pentagon
that will result from the evaluation of the capitals in each scenario in the long term,
will allow evaluation of the global gain or loss of the assets that make up the EMV [24].
Equation (4) represents Equation (3) expanded.

A =
1

2

∣

∣

∣

∣

∣

n−1

∑
i=1

xiyi+1 + xny1 +
n−1

∑
i=1

xi + 1yi − x1yn

∣

∣

∣

∣

∣

(3)

A =
1

2
|x1y2 + x2y3 + · · ·+ xn − 1yn + xny1 − x2y1 − x3y2 − · · · − xnyn+1 − x1yn| (4)
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Although the total area of the pentagon allows us to assess the overall contribution of
capital to community development, there are different irregular pentagons that can have
the same area. To distinguish and compare the pentagons, the coefficient of variation on
the capitals can be adopted [25]. Between two pentagons of equal areas, the one with the
smaller coefficient of variation will be the more stable. In Equation (5) the coefficient of
variation (CV) is presented.

CV =
σCi

X
(5)

where σCi
is the standard deviation between the capitals, and X is the mean of the capitals.

2.3. Simulation Algorithm

An evolutionary algorithm is an artificial intelligence-based computer application that
solves problems using mechanisms commonly associated with biological evolution, weaker
solutions are eliminated, while stronger and more viable ones are retained and re-evaluated
to the time limit of achieving the desired results [26,27].

The evolutionary method, similar to other genetic or evolutionary algorithms, finds a
good solution to a reasonably well-scaled model. Because the evolutionary method is not
based on derivative or gradient information, it cannot determine whether a given solution
is optimal, so it never really knows when to stop [28].

Evolutionary methods are widely applied to optimize processes, being basic for the
use of artificial intelligence [29]. The evolutionary method using the generalized reduced
gradient solving method (GRG), never ensures that it has found the best solution or that
an improvement could be found in the evolutionary algorithm were executed for a longer
time [30]. When Solver has converged to the current solution this can mean that Solver has
found an optimal solution; if so, new members of the solution will tend to “crowd” around
this solution. When Solver cannot improve the current solution, it will continue to search
for better solutions in the specified time.

2.4. Polynomial Regression

Modeling the factors makes it possible to evaluate how much the community develops
as energy is provided, the capital will change with a trend toward the energy demand. A
polynomial regression analysis using Microsoft Excel is useful to find this trend [31]. With
this, we can have a path between an initial scenario and an optimum point in time and
establish the goals at each stage of the horizon of development planning.

3. Methodology

The proposed methodology for modeling and simulating the behavior of capital initial
with diagnosis in a study community is shown in Figure 2. This scenario evaluates each of
the capitals based on the selected indicators applicable to the selected community. After
the analysis of the interaction of capitals, the specific indicators of the study related to
energy demand are defined. The ranges of variation of the indicators are defined and the
optimization model is run until an optimal solution is found. In the case of not reaching an
optimum, “n” runs of the model are carried out until reaching the best feasible solution
during the “n” times. The following figure presents, divided into three stages, the structure
of the proposed methodology. The first called endogenous potentialities development
includes the evaluation of the potential of the community, its capital, and opportunities
for intervention. The second called development of the quantitative model deals with the
development of the quantitative model that models the indicators with their variables and
parameters that contribute to the development of the community related to energy. The
third stage is the model simulation and optimization which performs the simulation of
the evaluation of the variables and parameters of these indicators in the energy planning
horizon as a way of having a tool that allows evaluating the contribution to the development
of the interventions carried out.
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Figure 2. Proposed model for planning energy supply systems in remote communities based on SLs.

As has already been indicated, the area of the pentagon that is formed with the results
of the capitals can be calculated employing the Gauss determinant. To establish a resolution
method that allows the Gauss determinant to be applied, the ordinate axis has been set as
human capital, then social capital is at 45◦, financial capital at 135◦, physical capital at 225◦,
and natural capital at 315◦. All degrees are clockwise. This allows obtaining the Cartesian
components in the plane of each capital by multiplying the value of the capital by

√
2/2.

Table 2 presents the value of each component for the five capitals analyzed.

Table 2. Value of each component for the five capitals analyzed.

Variable Description Value

xCh Component x of Human Capital 0
xCs Component x of Social Capital Cs

√
2/2

xCfin Component x of Financial Capital C f in

√
2/2

xCfis Component x of Physical Capital C f is

√
2/2

xCn Component x of Natural Capital Cn
√

2/2
yCh Component and Human Capital Cs

√
2/2

yCs Component of Social Capital Cs
√

2/2
yCfin Component y of Financial Capital Cs

√
2/2

yCfis Component y of Physical Capital Cs
√

2/2

yCn Component y of Natural Capital Cs
√

2/2

Therefore, the area of the pentagon will be determined by Equation (6).

A =
1

2

∣

∣

∣
xchycs + xcsyc f in + · · ·+ xcn − 1ycn + xcnych − xcsych − xc f inycs − · · · − xcnycn+1 − xchycn

∣

∣

∣
(6)
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where ch is human capital, cs is social capital, c f in is financial capital, cfis = physical capital,
and cn is natural capital.

3.1. Pentagon Area Shape Coefficient

The area shape coefficient (ASC) of the pentagon, obtained through Equation (7) allows
us to evaluate the aspect ratio of the asset pentagons resulting from each proposed scenario.
Equation (7) is the function objective to asset the evolution of areas, where A is the area of
the pentagon of capitals. All capitals have values between 0 and 1.

Max· ASC = A (1 − CV) (7)

Subject to:
0 > ch, ch, cs, c f in, cfis, cn > 1
Given the possibility of having the same total area of the pentagon with different

arrangements of the capitals, it is necessary to establish a measure that allows evaluating the
shape differences. The ASC penalizes the resulting area, subtracting a value proportional
to the existing deviation (variation coefficient) [32–34]. The ASC of pentagons of equal area
will be less while the more the capitals vary among themselves.

The goal of the proposed methodology is to obtain the maximum ASC according to the
capital structure in the selected community. A maximum ASC guarantees the development
of the community based on the growth of the ESS, as well as sustainability since this
development will take place with a harmonious growth rate among the five capitals.
After the first phase (evaluation of the capital), based on this potential, interventions are
developed that modify the indicators and variables to promote development.

3.2. Capitals Modeling and Simulation Algorithm

Once the initial values of the capitals have been defined, the model is developed by
performing macros, optimizing the areas, and calculating the capitals. A set of restrictions
are developed for the variables so that the best response can be obtained for each case. For
the evaluation of the three scenarios (poor, normal & rich) two cases were deemed. The
first all evolve at the same rate and the second independently, however, the second was
considered to have a better reference of the same condition of both.

Once the planning model was simulated, random variations were made for its sim-
ulation that allowed verifying its behavior and taking the average values. The average
values are used as references to accurately determine the values of the three scenarios that
define the three stages of evolution, from very low to rich resources. With the data from
three scenarios, the behavior graphs are defined for the energy planning model integrated
with the SLs. Furthermore, with them they are determined by adjustments of the most
representative curves of each planning model run, to have the planning model represented
through an equation and not of data. An equation allows us to determine the condition at
each moment of the evolution between capitals. It is of great importance to establish that
the analysis is conducted for limited conditions between 0 and 10 years.

With the modeling and simulation of the capitals and other variables, an analysis of
the behavior of the systems can be developed at any moment. With the application of
Equation (8), it has been possible to carry out a quantitative study from qualitative data.

Capx(n) = ∑
n=10

n=0
Capx(n−1) ± δ ∗ ∆v

∆t
; 0 ≤ Capx ≤ 1 (8)

where Capx(n−1) is the capital under study x in the state n, δ is the discrete trigger function

to define the addition or subtraction of the percentage factor, and ∆v
∆t is the percentage of

1% growth or decrease.
Figure 3 shows the capital simulation process. This flowchart expresses the logic of

the simulation process of the variables and parameters for the calculation of the capital
indicators. The prediction model starts from the generation of an initial scenario for the
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variables of the indicators defined from the review of the literature and is dimensioned
using the community’s survey, then it evolves to a rich scenario, optimized at each moment
of the planning. the objective function. The optimization guarantees for each moment the
highest value of each capital with the most regular shape possible of the asset pentagon.

Figure 3. Capitals simulation flowchart.

Figure 4 shows the trend of the evolution of capital in the planning time horizon 
based on indicators related to energy demand. As can be seen, there is a linear increasing 
trend for four of the five capitals, except for natural capital, which decreases linearly be-
cause it is capital used by the community for its economic expansion. In any case, the 
proposed model limits the reduction of natural capital to 60% of the initial level and a 
harmonious regularity with the other capitals with the ASC.

Figure 4. Capital evaluation equations.
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4. Results

The results have been obtained through a simulation of the values of the variables
established based on a survey carried out in Santana, a remote community of Los Cacaos,
San Cristóbal Province in the Dominican Republic.

Figure 5 allows us to see graphically how the proposed methodology relates the vari-
ables of the key indicators for the delivery of livelihood opportunities to the communities
so that their capitals improve over the time horizon. It is important to consider that the
sustainable livelihoods approach carries out a process of participatory interaction between
the indicators of the capital to guarantee the sustainable development of the community.
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The analysis through the parameter’s simulation of the community livelihood, shows
the evolution from the poor to rich scenario, going through normal. With this, it is possible
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to establish the pathway that the community must follow in planning its development, at
the same time that they control their development through monitoring capital variables.

A set of polynomial regressions equations were calculated based on the simulations
performed, which allows seeing the behavior and analyzing its average value. This serves
as the basis for establishing the initial and final value of the capital considering a normal
evolution of the same. Table 3 shows the equations obtained through polynomial regression
for each of the capitals.

Table 3. Regression equations for each capital.

Capitals Equations

Human capital y = 0.0013x2 + 0.0391x + 0.4412
Social capital y = 0.0011x2 + 0.0381x + 0.3952

Financial capital y = 0.0009x2 + 0.0371x + 0.3492
physical capital y = −0.001x2 − 0.068x + 0.3139
natural capital y = −0.0003x2 − 0.036x + 0.9933

A polynomial regression analysis was performed for the objective function, taking
the three scenarios: poor, normal, and rich. The resulting equation is described in Figure 6.
The objective function represents the growth of the capital and the growth condition of the
community, which is observed as a community whose growth objectives are outlined with
a vision, allowing the capital to develop favorably, resulting in economic and social growth.
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Table 4 presents the data that describes the behavior of the capitals and the objective
function considering the polynomial regressions and evolution behavior between the
different scenarios, as well. There is a growing trend in the data corresponding to human,
social, financial, and physical capital, while natural capital decreases due to the use of
resources made to promote community development.

This methodology allows evaluating the contribution to development by the adequate
provision of the demand of the ESS in remote communities through the SLs approach by
comparing the area of the pentagon with the optimum of the ASC with what is chosen for
each possible scenario the solution that has the most regular shape for the largest possible
area which translates into resilient and harmonious development among all capitals. For a
case study, it will only be necessary to select the specific indicators and variables applicable
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to the community and substitute them in the validated model to obtain the long-term
planning of community development based on its livelihoods.

Table 4. Capitals evolution behavior between the different scenarios.

Period Ch Cs Cfin Cfis Cn
Objective
Function

0 0.4412 0.3952 0.3492 0.3139 0.9933 0.80
1 0.4816 0.4344 0.3871 0.3809 0.9576 0.91
2 0.5246 0.4758 0.4268 0.4459 0.9225 1.02
3 0.5702 0.5194 0.4683 0.5089 0.8880 1.13
4 0.6184 0.5652 0.5116 0.5699 0.8541 1.24
5 0.6692 0.6132 0.5567 0.6289 0.8208 1.35
6 0.7226 0.6634 0.6036 0.6859 0.7881 1.46
7 0.7786 0.7158 0.6523 0.7409 0.7560 1.57
8 0.8372 0.7704 0.7028 0.7939 0.7245 1.68
9 0.8984 0.8272 0.7551 0.8449 0.6936 1.79

10 0.9622 0.8862 0.8092 0.8939 0.6633 1.90

5. Discussions

When evaluating the area–time curve with energy–time demand, there is a direct
relationship between the area of the pentagon at each stage of the community planning
horizon and energy demand. This allows corroborating that a correct provision of energy
for intervention projects that allow taking advantage of the endogenous potential of the
community will increase the capital of the community. However, this capital increase
may not be sustainable if the growth of one capital is achieved at the expense of another
capital, as has been seen in communities where financial capital grows and natural capital
deteriorates significantly. Therefore, this research proposes that the Objective Function
based on the ASC chooses for each possible scenario the solution that has the most regular
shape, which will be the one that harmonizes the results among all the capitals.

There is a high correlation between the variations of the area and the ASC, which allows
us to establish that as the capitals grow, there is a growth around the pentagon that they form
and therefore a community development growth. This constitutes the fundamental utility
of the methodology, being able to have a tool to evaluate within the temporal horizon how
winning livelihood interventions help to improve community capital.

The variation of the energy demand expressed by the curve allows the evaluation of a
trend highly correlated to the evolution of the area, which clearly states how the correct
provision of energy to a community contributes not only to the decrease of PE but also to
sustainable development, based on SLs indicators. As shown in Figure 7.

In the case studies, there will be a line of evolution that may go below at one time and
at others above the trend line of the simulated planning. When this occurs, the variables
that affect this change must be verified and the necessary interventions to control them
according to future projections.

In certain cases where the rise or fall difference is too great at the beginning or end, or
where shapes of the trend line are obtained that are far from the planned one, it is possibly
intervention projects executed at very specific times within the time horizon. This is due
to the certain availability of resources obtained by the particular social processes of the
community. The differences produced must be adjusted with the initial planning model.

The sustainable livelihoods approach has a set of variables and parameters that in
this work have been selected for their relationship with energy management, which can be
considered as decision elements in future work that focuses on smart management in the
short term.
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Table 5 presents a model comparison with eighteen recent papers. In 2020, Mukisa
et al. included the optimization of the model for a local case and develops his model
for specific moment conditions [35]. The proposed model included the optimization and
focuses on the long term with the annual evolution within a timeline only, the proposed
work has included the projection of the evolution of capital through the temporal horizon.

Table 5. Proposed model comparison.

No. References SLA
Optimized

Model
Capitals, Indicators and

Variables Projected
Temporal Resolution

Spatial
Resolution

1 Proposed Model YES YES YES Long Term Local
2 Henao [36] YES NO NO Specific conditions Local
3 Bhattarai and Thompson [37] - NO NO Specific conditions Local
4 Martinkus [38] YES NO NO Specific conditions Local
5 Huang et al. [28] - NO NO Long-term Regional
6 Nadimi and Tokimatsu [39] - NO NO Long-term Global
7 Yadav et al. [40] - NO NO Long-term Global
8 Mahmud et al. [41] - NO NO Long-term Global
9 Akinyele et al. [16] - NO NO Specific conditions Local

10 Chinmoy et al. [42] - NO NO Long-term Global
11 Khanna et al. [43] - NO NO Long-term Regional
12 Søraa et al. [44] - NO NO Long-term Global
13 Karthik et al. [45] - NO NO Specific conditions Local
14 Viteri et al. [46] - NO NO Specific conditions Regional
15 Mukisa et al. [35] YES YES NO Specific conditions Local
16 Musonye et al. [47] - NO NO Long-term Global
17 Lozano and Taboada [48] - NO NO Long-term Global
18 Campos and Marín-González [49] - NO NO Long-term Global
19 Ahmadi & Rezaei [50] - NO NO Specific conditions Local

6. Conclusions and Recommendations

This paper studies the gap research between energy planning models and the Sustain-
able Livelihoods (SLs) approach. To contribute to decision-making in the development
planning of remote communities in relation to the evolution of energy demand, work
has been carried out to achieve sustainable development goals, especially objective-7. A
model has been proposed that has the practical utility of guiding decision-making for the
community’s development and evolution of the energy supply system in the long term.

Due to the correlation between the area of the pentagon and energy demand, it can be
concluded that the adequate energy supply system to remote communities will increase
the community’s sustainable livelihoods. In the case studies, the variables that affect the
changes in the modeled trend line should be controlled. This must be carried out by



Energies 2023, 16, 3143 15 of 17

comparing the real value with the projected one and taking actions that allow driving the
study variable to the desired value.

A trend line from the case study will diverge from the modeled one, according to
the execution of the interventions, based on the use of energy that affects the variables
of the model. These interventions may be plans, actions, or microcredits that allow the
installation of electro-energy equipment and machinery that help improve the efficiency of
the products or services that the community offers.

Modeling of the energy supply system is necessary for the provision of the demand
in long-term planning technologies. It brings the application of optimization of energy
systems, especially with renewable energies to ensure an affordable and clean pathway.
The proposed methodology is intended to be applied to communities classified with energy
poverty. This will allow for having totally objective selection criteria in establishing an
order of priority for the proper implementation of development projects.

Future works should study how an energy management system can control the dis-
patch demand in the short term the energy supply system according to the resources
availability and its harnessing.
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