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Abstract
Native trees from the Caribbean were tested for seed desiccation responses, by adapting 
the “100-seed test” protocol. Ninety-seven seed lots of 91 species were collected in the 
Dominican Republic and tested for germination immediately after collecting, and after dry-
ing and moist storage. Seed desiccation sensitivity was assessed as a continuous variable 
(Viability Loss Index; VLI), based on seed germination values before and after drying. The 
results were compared with predictions of seed desiccation responses based on seed lot 
traits (initial moisture content and thousand-seed weight) and with those of published pre-
dictive models based on plant and seed traits. VLI could be calculated for seed lots of 40 
species. 80% of these seed lots showed consistent results among experiments and predic-
tive models. Issues on the set up of the experiments were discussed, as well as the species 
for which experimental results and predictions led to contrasting results. Overall, the “100-
seed test” confirmed to be an effective tool for assessing seed desiccation responses of a 
diverse under-investigated woody flora, guiding the seed conservation of trees and their 
use in reforestation programmes. In addition, by providing new data, it might improve the 
performance of available predictive models.

Keywords  Ex situ conservation · Orthodox seeds · Recalcitrant seeds · Seed collections 
management · Seed mass · Seed moisture content

Introduction

Trees have a high socio-economic and cultural value (Dawson et al. 2014) and provide a 
variety of ecosystem services at the species and agroforest levels (Thompson et al. 2011). 
Despite their importance, it is estimated that over 8000 tree taxa, 10% of the world’s total, 
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are globally threatened with extinction (https​://globa​ltree​s.org/threa​tened​-trees​/red-list/). 
At the same time, although international conventions and national policies for biodiversity 
conservation and climate change mitigation call for increased forest protection, globally 
forest cover continues to decline (Löf et  al. 2019). In Central and South America, agri-
culture is the main cause of deforestation (FAO 2011), with rates above the world average 
(Ceddia 2019). In addition, the Caribbean Islands are small and densely populated, result-
ing in intense competition between biodiversity conservation and economic activities such 
as agriculture (Lugo et al. 1981).

Although, theoretically, there is no technological reason why a plant species should 
become extinct (Smith et al. 2011), challenges should still be addressed to guarantee the 
effective conservation of trees (Pritchard et al. 2014). Ex situ conservation through stand-
ard seed banking (i.e. seed storage at—18 °C after drying to ca. 5% of moisture content; 
FAO 2014; FAO/IPGRI 1994; Linington 2003) is considered the best option for long term 
preservation of plants, at least for those with desiccation tolerant seeds (Iriondo and Pérez 
1999). “Orthodox” (desiccation tolerant) seeds can tolerate drying to a moisture content 
(mc%) of ca. 7%, with little to no negative effect on viability, as opposite to “recalcitrant” 
(desiccation sensitive) seeds (Roberts 1973), whereas “intermediate” seeds are those that 
can tolerate drying to ca. 10% (Hong and Ellis 1996). However, species response to seed 
desiccation should be considered as a continuum through the whole spectrum between 
the two extremes (i.e. fully desiccation tolerant or sensitive species) and evaluated quan-
titatively (Walters 2015). In addition, intraspecific variability has been reported for this 
seed trait, with environmental conditions during seed development affecting the level of 
seed desiccation tolerance at dispersal (Daws et al. 2004). Knowledge of seed desiccation 
responses is vital in reforestation, as seed storage can be useful in streamlining tree produc-
tion, sharing seeds among nurseries and accumulating seeds for direct seeding (Elliott et al. 
2013).

According to recent estimates, 33% of the tree species worldwide are likely to produce 
desiccation sensitive seeds (Wyse and Dickie 2018), with the highest percentages recorded 
in tropical and subtropical habitats (Pritchard et al. 2014; Tweddle et al. 2003; Wyse and 
Dickie 2017). However, little is known on the seed biology of many tropical trees, par-
ticularly regarding their seed storage behaviour (Sacandé et al. 2005). Such issues can be 
addressed through the screening of tree species for their seed desiccation physiology and 
the development of models to predict their responses (Pritchard et al. 2014).

Seed traits may be used to predict seed desiccation tolerance. As a rule of thumb, des-
iccation sensitive seeds are larger and have a higher moisture content at dispersal. Hong 
and Ellis (1996) found that in 94 contrasting species, seeds with a thousand seeds weight 
(TSW) lower than 2500 g and a moisture content up to 23% showed orthodox behaviour. 
According to Chin et  al. (1984), desiccation sensitive seeds have usually a TSW higher 
than 500 g and a moisture content ranging from 30 to 70%. These criteria have been used 
by the Xishuangbanna Germplasm Bank in China as a decision-making tool in the han-
dling of species with unknown desiccation sensitivity (TSW–MC model; Lan et al. 2014).

Daws et  al. (2006) developed a predictive model for 104 Panamanian tree species in 
which seeds with a relatively thin seed coat (measured as seed-coat ratio, SCR), combined 
with a large seed mass are likely to be desiccation sensitive. This model was then validated 
for 38 African and European woody species (see Pritchard et al. 2014), 71 Australian rain-
forest species (Hamilton et al. 2013), and 101 woody species of tropical southern China 
(Lan et  al. 2014). Wyse and Dickie (2018) developed a set of models based on boosted 
regression trees analysis (BRT) to predict the likelihood of seed desiccation tolerance/sen-
sitivity. These BRT models are informed by available data on seed and plant traits (i.e. 

https://globaltrees.org/threatened-trees/red-list/
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seed mass and plant woodiness), the climate(s) of the species’ distribution and the known 
seed storage behaviour of the species’ relatives (Wyse and Dickie 2018). As stated by the 
authors, these BRT models do not intend to replace the seed physiology/biology models 
(e.g., Daws et  al. 2006; Lan et  al. 2014), but should rather be used in conjunction with 
them (Wyse and Dickie 2018).

The most widely used protocol to assess seed responses to multiple desiccation states 
and subsequent storage at a range of temperatures was developed by Hong and Ellis 
(1996), assessing seed viability before and after drying, through germination experiments. 
This approach implies that seed dormancy breaking and germination studies should be car-
ried out before starting a research on seed storage responses (Hong and Ellis 1996). How-
ever, this protocol uses thousands of seeds, which may be a constraint when working with 
wild tree species (Pritchard et  al. 2004). In order to overcome this limitation, Pritchard 
et  al. (2004) developed a screening approach which deals with only the effect of drying 
and short-term storage at the initial mc (%) on seed viability assessed through seed ger-
mination, called the “100-seed test”. This test was initially developed for palm seeds and 
then recommended by the Royal Botanic Gardens, Kew as a suitable method for identify-
ing desiccation sensitive seeds in developing ex situ conservation strategies (Gold and Hay 
2014) and, as a such, adopted worldwide (e.g. Hamilton et al. 2013; Lan et al. 2014).

Even though seed desiccation responses of tree species have been investigated in Central 
America (e.g., Daws et al. 2005), information is still deficient for the Caribbean Islands. 
The Jardín Botánico Nacional ‘Dr. Rafael M. Moscoso’ of Santo Domingo (JBSD) in the 
Dominican Republic is working with the Royal Botanic Gardens, Kew for the conservation 
of the threatened forest of Hispaniola in the framework of “The Global Tree Seed Bank 
Project” (https​://brahm​sonli​ne.kew.org/msbp/Proje​cts/Trees​). Through this collaboration, a 
new seed bank was recently opened in the JBSD (Mattana et al. 2017). This included the 
setup of a screening programme, based on the 100-seed test protocol (Gold and Hay 2014; 
Pritchard et al. 2004), for all the tree seed lots entering the seed bank (Mattana et al. 2017).

Therefore, the objectives of this study were to: (1) identify the native tree species enter-
ing the JSBD Seed Bank for which the 100-seed test protocol could assess seed desicca-
tion responses and those for which further studies on seed germination requirements are 
needed; and (2) discuss the results of the 100-seed test in the light of those of the BRT 
(Wyse and Dickie 2018) and TSW–MC (Lan et al. 2014) predictive models.

Materials and methods

Study area

The island of Hispaniola, administratively divided between the Dominican Republic and 
Haiti, is the second largest island, after Cuba, of the Caribbean Islands Biodiversity Hot-
spot (Acevedo-Rodríguez and Strong 2008). The altitude of the island ranges from sea 
level to the 3175 m a.s.l. of Pico Duarte in the Dominican Republic, which is the highest 
peak of the whole Antilles. The climate is tropical, altered by the Atlantic trade winds and 
the topography of the island. The annual average temperature is 25 °C, with little variation 
during night or day and few seasonal fluctuations (Cano Carmona et al. 2010). The Island 
experiences two distinct seasons: a dry season from November through April and a wet 
season with a mid-summer drought, resulting in a bimodal cycle of precipitation (May/
June and August/October; Karmalkar et al. 2013). The flora of the Island comprises over 

https://brahmsonline.kew.org/msbp/Projects/Trees
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4,000 species, with ca. 40% of them being endemic (Acevedo-Rodríguez and Strong 2008). 
According to the most recent estimates, 1060 tree species, belonging to 94 families, are 
reported for the Dominican Republic (Botanic Gardens Conservation International 2019).

Seed collecting

Ninety-seven seed lots of 91 native woody species belonging to 36 families were collected 
during the period 2015–2017 in different localities of the Dominican Republic, as detailed 
in Table S1 and stored at the Jardín Botánico Nacional ‘Dr. Rafael M. Moscoso’ of Santo 
Domingo (JBSD) Seed Bank. The choice of the optimal timing for seed collection, as well 
as harvesting methods and quantity of material to be collected, were regulated by ethical 
and scientific criteria that guarantee a high quality of the collected material (Way 2003) and 
minimised the impact on the in situ genetic resources (Menges et al. 2004). Collected seed 
lots were delivered to the JBSD Seed Bank up to seven days from collecting and processed 
following international protocols (ENSCONET 2009; ISTA 2007; Smith 1995; Terry et al. 
2003). Priority for the cleaning was given to fleshy fruits, for which seeds and pyrenes are 
separated from the pulp under running tap water and then left to dry. After cleaning, seed 
lots included whole dry fruits, woody endocarps, and seeds, but we will refer to them as 
“seeds” through the manuscript. Taxonomic nomenclature follows The Plant List (2013).

Likelihood of seed desiccation sensitivity

Probability of recalcitrance (PoR) was assessed for the investigated species using the three 
BRT models developed by Wyse and Dickie (2018). These models predict the likelihood of 
seed desiccation responses based on habitat and traits information for the species, and the 
seed desiccation responses of close relatives (either member of the same genus, family or 
order, depending on the model). PoR ranges from 0 (likely desiccation tolerant species) to 
1 (likely desiccation sensitive species), with a threshold value of 0.5 to distinguish between 
the two categories (Wyse and Dickie 2018).

TSW–MC characterization

Seed desiccation responses categories were assigned a priori for the collected seed lots 
according to the TSW–MC criteria (Hong and Ellis 1996). According to Lan et al. (2014), 
when seeds had an initial mc > 30% and a TSW > 500  g, we considered the seed lot as 
“Desiccation Sensitive” (DS); in contrast, when the initial mc < 30% and TSW < 500  g, 
we considered them as “Desiccation Tolerant” (DT). When seeds had only one of the two 
traits (mc or TSW) compatible with DS, we considered the seeds as “Non Desiccation Tol-
erant” (NDT) and, in particular, NDT1 when mc > 30%, but TSW < 500 g and NDT2 when 
TSW > 500 g, but mc < 30%.

100‑seed test protocol

Seed physiological responses to desiccation were assessed for the investigated seed lots 
(see Table S1) by applying the “100-seed test protocol” (Pritchard et al. 2004), modified by 
Gold and Hay (2014) and further adapted as detailed below and summarized in Figure S1. 
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At least 100 seeds per seed lot were divided in three sublots named: “fresh seeds” (at least 
36 seeds); “dried seeds” (at least 32 seeds); and “moist seeds” (at least 32 seeds).

The equilibrium relative humidity (eRH) of the “fresh seeds” was determined imme-
diately after cleaning, using a temperature and relative humidity logger (Tinytag View 2 
TV-4505 with probe; Gemini Data Loggers, Chichester, UK). At the same time, mc (%) 
was determined gravimetrically through oven-drying at 103 °C for 17 h (ISTA 2007), using 
at least ten seeds. When working with large (> 7 mm) or hard coated seeds, they were cut 
in a half or pieces < 7 mm, before weighting and oven-drying (ISTA 2007). Fresh weight 
of the seeds before oven-drying was used to estimate their TSW in grams.

“Fresh seeds” were incubated for germination at 25 °C, with a photoperiod of 12 h of 
irradiance per day, using two replicates of at least 13 seeds each, sown on paper soaked 
with distilled water in 90 mm diameter plastic Petri dishes or in transparent closed plastic 
boxes (174 × 115 × 60 mm). When seed size was excessively large for the plastic boxes, ger-
mination on compost in the nursery was preferred. Seeds of species belonging to families 
reported to have physical dormancy, as those listed in Baskin et al. (2000), were scarified 
before incubating. Germination was recorded weekly and the germinated seeds removed. 
Germination tests lasted a minimum of four weeks. If germination occurred, the test was 
terminated two weeks after the last seed germinated. The remaining seeds were evalu-
ated by a cut-test to ascertain whether they were full (looking healthy and fresh), empty, 
infested or mouldy. Final germination percentage was calculated based on the total number 
of viable seeds sown per replicate.

“Dry seeds” were kept at room temperature in a sealed glass container for a week, with 
a 1:1 ratio in weight of seeds: silica gel; then moved to another container with a 1:4 ratio 
for another week; and then in a paper or cloth bag kept into a sealed plastic drum with an 
excess of silica gel for another week (or more, until the 15% eRH was reached). The ratios 
of 1:1 and 1:4 for silica gel drying correspond to 30 and 15% eRH, respectively (Probert 
2003), leading to a progressive increment of drying level, in order to limit seed viability 
loss due to fast drying up to the excess of silica gel in the drum. Meanwhile, “moist stored 
seeds” were kept in a semi-closed glass container in a ventilated room for the same length 
of time. At the end of this 3-weeks (or more) period the eRH and mc% values of the two 
seed lots (“Dry seeds” and “Moist seeds”) were reassessed as described for “Fresh seeds”, 
using at least six seeds instead of ten for moisture content. Also, for each seed lots, after 
one day at room conditions, two replicates of at least 12 seeds each were incubated for ger-
mination, as above described for “Fresh seeds”.

Data analysis

Seed desiccation sensitivity is not a binary variable, but a gradient between two extremes 
(Walters 2015). Therefore, these data were analysed as a continuous factor and quantified 
using the Viability Loss Index (VLI), calculated as follows:

VLI values theoretically vary from 0 (desiccation tolerant seeds) to 1 (desiccation sensi-
tive seeds), although negative values were obtained when dried seeds germinated to higher 
level than fresh seeds. However, in order to assign the seed lots to qualitative categories, 
seeds with VLI > 0.95 were considered as “desiccation sensitive” (vDS), while those with 
0.95 > VLI > 0.5 as “potentially desiccation sensitive” (vDSp). Seeds with VLI < 0.05 as 

VLI = (Fresh germination% − dry germination%)∕Fresh germination%
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“desiccation tolerant” (vDT) and those with 0.05 < VLI < 0.5 were considered as “poten-
tially desiccation tolerant” (vDTp).

VLI was calculated only for those seed lots for which fresh germination, considering its 
variance calculated as standard deviation, was higher than 50% and the seed moisture con-
tent after drying lowered below 20% (Table S2). Three seed lots for which standard devia-
tion of dry germination was higher than 35% were also excluded from the VLI calculation 
(Table S2).

Statistical analysis

All analyses were carried out in R version 3.5.1 (R Core Team 2013). All graphs were plot-
ted using the “ggplot2” package (Wickham 2016).

In order to confirm that the applied drying protocol significantly affected the seed mois-
ture content of the investigated seed lots, the effect of treatment (3-level factor: control, 
fresh; dry; and moist) and of the “a priori” TSW–MC categories (4-level factor: DS, DT, 
NDT1 and NDT2) on moisture content values were tested using a linear regression model 
(“lm” function), with seed lots as replicates (N = 97). Parametric assumptions were checked 
using the “car” (Fox and Weisberg 2011) and the “ggplot2” packages. As the assumptions 
of homogeneity of variance, non-multicollinearity, and normal distribution of residuals 
were not met, a robust non-parametric linear regression was carried out by bootstrapping 
(2000 repetitions), using the “boot” package (Canty and Ripley 2017).

In order to assess the germination responses to the applied drying protocol, the effect of 
treatment on seed germination (3-level factor: control, fresh; dry; and moist) was tested for 
each a priory TSW–MC category by generalized linear mixed models with binomial dis-
tribution (“logit” link function), using the “glmer” function of the “lme4” package (Bates 
et al. 2014). Germination responses were recorded for each replicate (petri dish) as number 
of germinated and non germinated seeds. The seed lot was considered as random factor to 
avoid pseudo replication (Crawley 2012).

Results

Seed collections variability

Seeds of the 91 investigated species varied in their mass by five orders of magnitude, rang-
ing from a TSW < 0.1 g for Elekmania buchii and Exostema caribaeum to values > 10 kg 
for Juglans jamaicensis, Mammea americana, and Mora abbottii (Fig.  1 and Table S2). 
Seed collections varied also in the macro-morphology, including true seeds, woody endo-
carps, and whole dry fruits (see Fig. 1 for a selection).

Likelihood of seed desiccation sensitivity

The three BRT models developed by Wyse and Dickie (2018) allowed for prediction of the 
likelihood of seed desiccation sensitivity for all the investigated species (Table S2). For one 
species (Canella winterana) the applied predictive model was at order level, for 42 species 
at family level, and for 25 at genus level, while information on seed storage behaviour was 
already available for 23 species (meaning a PoR value of 0 or 1 for orthodox or recalcitrant 



711New Forests (2020) 51:705–721	

1 3

species, respectively; Table S2). These models allowed identifying 65 species (70 collections) 
as likely orthodox and 26 (27 collections) as likely recalcitrant (Table S2).

TSW–MC characterization

Initial moisture content (mc, %) of fresh seeds and their log (TSW) were slightly positively 
correlated (y = 8.06x + 7.05; R2 = 0.24; p < 0.001; Fig. 2). The TSW–MC criteria allowed iden-
tifying a priori 59 seed lots as desiccation tolerant (DT; fresh mc < 30% and TSW < 500 g; 
Fig.  2) and 17 seed lots as desiccation sensitive (DS; fresh mc > 30% and a TSW > 500 g; 
Fig. 2). Twenty-one seed lots were considered as non desiccation tolerant (NDT): 12 as NDT1 
(i.e. mc > 30%, but TSW < 500 g; Fig. 2) and nine as NDT2 (TSW > 500 g, but mc < 30%; 
Fig. 2).

100‑seed test protocol

The 100-seed test was carried out for all the 97 seed lots. Fresh mc (%) of the different cat-
egories identified a priori through the TSW–MC criteria, ranged from 15.26 ± 6.28% (DT) 
to 45.35 ± 9.29% (DS; Fig. S2). Seed drying performances of the different TSW–MC cat-
egories highlighted how the adapted 100-seed test protocol applied in this study allowed to 
get an average dry mc close to 5% for DT (6.25 ± 3.84%), NDT2 (6.00 ± 4.03%) and NDT2 
(8.09 ± 3.43) while for DS species this value was 12.82 ± 10.97 (Fig. S2). Moist treatment 
led to final mc% ranging from 13.02 ± 6.98% for DT to 35.27 ± 14.19% for DS (Fig. S2). 

Fig. 1   Density distribution, expressed as number of seed lots, of the TSW (g) and morphological varia-
bility of the species investigated in this study. Seed of Maclura tinctoria (TSW: 2.1  g); fruits and seeds 
of Ziziphus rignonii (223 g); woody endocarp of Juglans jamaicensis (10 kg); and seed of Mora abbottii 
(TSW: 58 kg)
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The bootstrapped linear model confirmed that the drying method applied in this study led 
to statistically significant different values among treatments as well as among categories 
(Table 1). All interactions between treatment and category for dry seeds were statistically 
significant except for NDT1 seed lots (Table 1).

Seed germination performances of the different TSW–MC categories highlighted a 
higher germination of fresh seeds for DS and NDT1 (ca. 65%) respect to DT species (ca. 
54%), while NDT2 had the lowest value (ca. 45%; Fig. S3). Not surprisingly, seed ger-
mination of dry seeds did not vary drastically from the fresh germination for DT species 
(ca. 44%), whereas it dropped to ca. 12% for DS species, while NDT1 and NDT2 showed 
values of 18 and 24%, respectively (Fig. S3). Species categories showed differences on 
their final germination of moist seeds with this value being similar to that of dry seeds for 
DT species (ca. 42%), intermediate between those of fresh and dry seeds for NDT1, NDT2 
and DS (ca. 25, 38 and 28%, respectively; Fig. S3). The generalized linear mixed models 
carried out for each species category highlighted that treatment had a statistically signifi-
cant negative effect with respect to the control fresh seeds except for the moist seeds of the 
NDT2 category (Table 2) However, all models showed a large overdispersion and therefore 
estimated parameters should be considered with caution.

For 40 of the investigated seed lots, the criteria identified for calculating the VLI 
(i.e., fresh germination > 50% and dry mc < 20%) were met (Table  S2). Fourteen seed 
lots (corresponding to the same number of species) were identified as desiccation sen-
sitive (vDS; VLI > 0.95), one (Sapindus saponaria) as probably desiccation sensitive 

Fig. 2   Seed storage behaviour categories assigned a priori to the seed collections (N = 97) according to 
the TSW–MC model criteria, where desiccation tolerant (DT) species have an initial seed moisture con-
tent < 30% and a TSW < 500 g, while desiccation sensitive (DS) species have higher values for both traits 
(Lan et al. 2014). Seed lots which had a mc > 30%, but a TSW < 500 g and vice versa were identified as 
NDT1 and NDT2, respectively. Points with different colours correspond to different plant families whereas 
their size is a function of their seed mass. Blue line corresponds to the fitted linear model (y = 8.06x + 7.05; 
R2 = 0.24; p < 0.001) for the relationship between initial mc (%) and log(T SW) (g), and the grey area to the 
95% confidence interval. Fitted linear model confirmed by bootstrapping. (Color figure online)
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(vDSp; 0.5 < VLI < 0.95), 11 seed lots/species as probably desiccation tolerant (vDTp; 
0.5 > VLI > 0.05), and 14 seed lots/species as desiccation tolerant (vDT; VLI < 0.05; 
Table S2). The identified categories showed differences on their seed mass and initial mc, 

Table 1   Coefficient values of the non parametric bootstrapped linear model (2000 repetitions) for the effect 
of treatment (3-level factor: control, fresh; dry; and moist) and of the a priori TSW–MC categories (4-level 
factor: DS, DT, NDT1 and NDT2) on moisture content

In bold coefficients for which the confidence interval did not cross zero, confirming the validity of the esti-
mates

Coefficients Estimate Bias SE 2.5% CI 97.5% CI

(Intercept) 45.35 0.03 2.21 41.14 49.90
Treatment dry − 32.53 − 0.07 3.48 − 38.52 − 24.90
Treatment moist − 10.08 − 0.06 4.08 − 19.11 − 2.63
Category DT − 30.09 − 0.03 2.37 − 35.19 − 25.57
Category NDT1 − 5.87 0.02 2.92 − 11.73 − 0.22
Category NDT2 − 25.62 0.07 3.26 − 32.44 − 19.40
Treatment dry: category DT 23.52 0.09 3.62 15.90 29.93
Treatment moist: category DT 7.68 0.10 4.25 − 0.21 17.15
Treatment dry: category NDT1 0.53 0.04 4.06 − 7.93 8.035
Treatment moist: category NDT1 − 5.65 − 0.14 6.36 − 17.09 7.08
Treatment dry: category NDT2 19.14 − 0.03 4.45 10.23 27.89
Treatment moist: category NDT2 8.37 − 0.01 6.01 − 2.21 21.80

Table 2   Model parameters of generalized linear models for each a priori TSW–MC category for the effect 
of treatment (fixed factor with 3 levels: control, fresh; dry; and moist) on seed germination with seed lot as 
random factor

In bold coefficients for which the confidence interval did not cross zero confirming the validity of the esti-
mates

Coefficient Estimate SE z value Pr(>|z|) 2.5% CI 97.5% CI Residual 
deviance

Random 
factor

DT
(Intercept) − 0.05 0.38 − 0.14 0.88 − 0.84 0.70 Dev 1330 Dev 7.80
Dry − 0.72 0.11 − 6.3 2.14e−10 − 0.95 − 0.50 df 345 SE 2.79
Moist − 0.74 0.11 − 6.4 1.23e−10 − 0.97 − 0.51
DS
(Intercept) 1.22 0.52 2.36 0.02 0.12 2.30 Dev 485.3 Dev 4.11
Dry − 4.52 0.30 − 15.03  < 2e−16 − 5.13 − 3.95 df 96 SE 2.03
Moist − 2.43 0.20 − 11.84  < 2e−16 − 2.84 − 2.03
NDT1
(Intercept) 0.564 0.85 0.66 0.51 − 1.44 2.34 Dev 269.7 Dev 7.98
Dry − 3.63 0.35 − 10.42  < 2e−16 − 4.34 − 2.97 df 66 SE 2.82
Moist − 3.00 0.32 − 9.37  < 2e−16 − 3.65 − 2.39
NDT2
(Intercept) − 0.42 0.60 0.69 0.49 − 1.86 0.88 Dev 249.4 Dev 2.96
Dry − 1.76 0.27 − 6.53 6.45e−11 − 2.30 − 1.24 df 50 SE 1.72
Moist − 0.43 0.23 − 1.86 0.06 − 0.89 0.02
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with increasing values of both traits from vDT to vDS species (Figure S4). In particular, 
vDT seed lots ranged in TSW from 1.22 to 427 g (with a mean value of 87.78 g) while vDS 
from 63 to 58,402 g (mean 6145 g). Initial mc (%) varied from 13.6 to 20.22% (mean value 
of 13.65%) and from 25.36 to 64.38% (mean value of 41.33%), for vDT and vDS, respec-
tively (Table S2).

Models’ predictions and experimental results

When comparing the VLI categories with those assigned a priori, according to the 
TSW–MC criteria and the likelihood of seed desiccation sensitivity predicted at species 
level by the three boosted models developed by Wyse and Dickie (2018), 31 seed lots/
species yielded consistent results (Table S2); three of them (Colubrina elliptica, Krugio-
dendron ferreum, and Magnolia hamorii) showed VLI results which did not correspond 
to BRT models results and the TSW–MC criteria (Fig. 3); and five of them (Coccothrinax 
fragrans, Cojoba zanonii, Mora abbottii, Roystonea borinquena, and Sapindus saponaria) 
showed BRT predictions which did not correspond to TSW–MC criteria and VLI experi-
mental categories (Table S2).

When plotting the distribution density of the DT seed lots according to the TSW–MC 
criteria in a grid constituted by their PoR and VLI values, the highest density of seed lots 
is correctly located in the area of the grid that corresponds to the DT species, with the 
exception of the three species identified as vDS by the experimental results (i.e. VLI higher 
than 0.95; see Fig. 3), but correctly predicted as likely orthodox by the predictive models 

Fig. 3   VLI values expressed as a function of the seed storage behaviour categories assigned a priori to the 
seed collections, according to the TSW–MC model criteria (N = 40). Desiccation tolerant (DT) species have 
an initial seed moisture content < 30% and a TSW < 500 g, while desiccation sensitive (DS) species have 
higher values for both traits (Lan et al. 2014). Seed lots which had a mc > 30%, but a TSW < 500 g and vice 
versa were identified as NDT1 and NDT2, respectively. Points with different colours and sizes correspond 
to different ranges of VLI. Blue line corresponds to the fitted linear model for the relationship between 
initial mc (%) and log(TSW) (g) (y = 9.05x + 4.03; R2 = 0.32; p value < 0.001) and the grey area to the 95% 
confidence interval. Fitted linear model confirmed by bootstrapping. (Color figure online)
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of Wyse and Dickie (2018) and for two species (C. fragrans and R. borinquena), which 
were identified as vDT and vDTp, respectively, by their VLI values (see Table S2), but that 
according to the predictive models should be considered as likely recalcitrant (Fig. 4).

 Discussion

The 100‑seed test as a tool to assess seed desiccation responses

This study allowed gathering new data on seed desiccation responses for seed lots of 40 
native trees of the Caribbean region and identifying those species for which more studies 
should be carried out. Overall, the 100-seed test is a reliable screening tool for seed desic-
cation responses of a diverse flora, as claimed by Gold and Hay (2014) and reported in 
previous studies (e.g., Hamilton et al. 2013; Lan et al. 2014). However, it should be taken 
into account that “moist seeds” had a high mortality (data not shown) with final germina-
tion percentages generally lower than that of fresh seeds despite their response to desicca-
tion. This was due to the “moist seeds” being kept at high levels of temperature and relative 
humidity (Gold 2014). Therefore, when both “dried seeds” and “moist seeds” died, stor-
age time could not be removed as a factor in the desiccation experiments (Pritchard et al. 
2004).

Fig. 4   Density distribution of seed lots of desiccation tolerant species identified according to the TSW–
MC model criteria (N = 26) in function of their values of VLI and PoR. vDS = desiccation sensitive seeds; 
vDSp = potentially desiccation sensitive seeds; vDTp = potentially desiccation tolerant seeds; vDT = desic-
cation tolerant seeds, according to their VLI values. Species with a PoR higher than 0.5 are likely desicca-
tion sensitive, while those with PoR lower than 0.5 as likely desiccation tolerant (Wyse and Dickie 2018)
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Seed dormancy issues

The 100-seed test was applied here as an overall screening for all tree seed lots entering 
the seed bank, in a flora for which information on seed germination ecology is still under-
investigated. Baskin and Baskin (2005) reported that the percentage of trees in climax trop-
ical forests with dormant seeds range from ca. 43 to ca. 66% for evergreen and montane 
forests, respectively. Sautu et al. (2007), in their study on a seasonal moist tropical forest of 
Panama, reported ca. 48% of tree species with dormant seeds. Ray and Brown (1994) found 
that only 17 of the 29 investigated tree species from a Caribbean dry forest in the Virgin 
Islands germinated well (> 80% of final germination), under shade-house conditions.

In this study, the only applied seed dormancy breaking treatment was the manual scari-
fication for seeds with physical dormancy according to Baskin et  al. (2000). Other pre-
treatments to overcome morphological and/or physiological components of seed dormancy, 
such as cold and/or warm stratifications, dry after ripening or exogenous GA3 (Baskin and 
Baskin 2014a) were not carried out. In some cases, seed germination of dry seeds was 
higher than that of fresh seeds suggesting the presence of physiological seed dormancy 
which was broken by drying (Baskin and Baskin 2014b). Low germination was recorded 
for most species of Arecaceae, Rubiaceae and Sapotaceae families (see Table S2) for which 
morphophysiological (Arecaceae), physiological (Rubiaceae) and physiological dormancy 
due to mechanical constrains (Sapotaceae) have been previously reported (e.g., Baskin and 
Baskin 2005; Baskin and Baskin 2014b; Finch-Savage and Leubner-Metzger 2006).

Low numbers

When working with native trees, particularly from tropical and semitropical regions, col-
lecting large amounts of seeds may be difficult, due to low density of individuals of each 
species, technical challenges in reaching the crawn of tall trees, and poor seed quality, 
including high levels of seed parasitism (Finkeldey and Hattemer 2007). In addition, when 
working with collections made for species conservation purposes, and of rare or threatened 
species, the number of seeds used for experimental purposes should be carefully consid-
ered (Pritchard et al. 2004).

The original protocol in Pritchard et al. (2004) and in Gold and Hay (2014) uses two 
replicates of 13 seeds for germination experiments and 6–10 seeds for moisture content 
calculation. When applying this protocol, researchers may consider increasing these num-
bers (e.g. 3–5 replicates with 10 seeds each; Hamilton et al. 2013) in order to increase its 
statistical power. In our study, we used two replicates as indicated in the original protocol, 
and, when seed availability was not a constraint, we increased the number of seeds sown 
per replicate. However, in some cases, the number of germinable seeds (i.e. germinated 
plus non germinated filled seeds) was even less than 13 per replicate due to the presence of 
empty/infested seeds (data not shown). We applied statistical tools to handle the data analy-
sis of low seed numbers. Bootstrapping was applied to fit robust linear regressions in order 
to deal with parametric assumptions issues (Field et al. 2012). Binomial generalized mixed 
models (GLMMs) using the number of germinated vs non germinated seeds per replicate, 
were carried out in order to get a weighted regression, using the individual sample seizes 
as weight (Crawley 2012). However, the models were overdispersed and therefore the out-
comes of the GLMMs should be taken with caution.
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Species for which further studies are needed

Three species were identified as desiccation sensitive by experimental results which 
however, according to their seed lot traits and the results of BRT models, should be 
considered desiccation tolerant. Colubrina elliptica (Rhamnaceae) has been reported 
to have seeds that retain 100% viability following drying at 15% eRH and freezing at 
− 20 °C for more than one year (Royal Botanic Gardens Kew 2019) and therefore it is 
considered as likely desiccation tolerant by Wyse and Dickie (2018). The initial mc and 
the TSW of the seed lot analysed in this study fell within the thresholds for desiccation 
tolerant seeds (Hong and Ellis 1996; Lan et al. 2014). However, seed viability dropped 
drastically after both drying and moist storage at moist conditions, suggesting a desicca-
tion sensitive behaviour.

Krugiodendron ferreum (Rhamnaceae) seed lot could be described as desiccation 
tolerant, according to both initial mc and TSW. The BRT models of Wyse and Dickie 
(2018) assessed this species as likely orthodox at family level. However, the experimen-
tal results clearly identified the tested seed lot as desiccation sensitive as previously sug-
gested by a technical report (Gann et al. 2016).

Finally, Magnolia hamorii (Magnoliaceae) seed lot had traits compatible with a desic-
cation tolerant behaviour and this was confirmed by the results of the BRT model at genus 
level. According to the experimental results this seed lot should be considered as desicca-
tion sensitive. However, the high germination percentage reached by fresh seeds (> 80%) 
was calculated on a reduced number of seeds due to the presence of empty seeds in both 
replicates.

The experimental results achieved for these three species could have been determined by 
a premature collecting. The majority of orthodox seeds acquire full desiccation tolerance 
shortly before natural dispersal (Hay and Smith 2003) and full ripe seeds should be used 
in desiccation tolerance screening tests (Gold and Hay 2014). Therefore, the full Hong and 
Ellis (1996) protocol should be carried out for these three species, before confirming their 
seed physiological responses to desiccation.

Providing new data for the predictive models

Five species showed BRT predictions which did not correspond to TSW–MC criteria and 
VLI experimental results: Coccothrinax fragrans and Roystonea borinquena (Arecaceae), 
Cojoba zanonii and Mora abbotii (Leguminosae), and Sapindus saponaria (Sapindaceae). 
According to the BRT model C. fragrans and R. borinquena are likely to be recalcitrant, 
while both seed lot traits and experimental result converged through a desiccation toler-
ant behaviour. The BRT prediction was made at family level and based on a probability of 
recalcitrance of 0.7 and 0.6, respectively and therefore close to the threshold of 0.5 between 
the two categories. This is not surprising, considering that Arecaceae and Arecales are, 
respectively, ones of the families and orders with the highest incidence of recalcitrant spe-
cies (Dickie and Pritchard 2002; Wyse and Dickie 2017).

The BRT model predicted a likelihood of desiccation tolerance for the two Leguminosae 
C. zanonii and M. abbotii at family level. However, the investigated seed lots resulted to be 
desiccation sensitive accordingly to both seed lot traits and experimental results. Although 
Leguminosae are reported to have a low incidence of seed desiccation sensitive species 
worldwide (1.2%; Dickie and Pritchard 2002), this percentage increases to 6% in tropical 
regions such as Sri Lanka (Jayasuriya et al. 2013).



718	 New Forests (2020) 51:705–721

1 3

Finally, S. saponaria was predicted to be likely orthodox by a model at genus level, with 
a probability of recalcitrance close to the threshold of 0.5, while the experimental results 
and the seed lot traits led towards a desiccation sensitive category. Royal Botanic Gardens 
Kew (2019) reports this species as “uncertain” highlighting the need of further studies.

These findings confirm how these models and their predictive success will benefit by 
the generation of new data (Wyse and Dickie 2018), particularly from tropical and sub-
tropical regions, as those provided in this study.

Conclusions

The adapted “100-seed test” protocol (Gold and Hay 2014; Pritchard et al. 2004) confirmed 
to be an effective screening tool for assessing seed physiological responses to desiccation 
at seed lot level, allowing gathering new data for tree species of the Caribbean region and 
identifying those species for which further studies are needed. Issues might arise during its 
practical set up, due to the poor knowledge on seed dormancy breaking and germination 
requirements, when working in a flora for which information on seed germination ecology 
is still under-investigated, and in the interpretation of the results, due to the low seed num-
bers used in the experiments. However, the availability of predictive models informed by 
seed lot traits (Hong and Ellis 1996; Lan et al. 2014) and seed and plant traits, such as the 
BRT models (Wyse and Dickie 2018) allows discussing the achieved results, highlighting 
those species for which further studies should be carried out in order to confirm their seed 
desiccation responses. These findings might guide the seed conservation of trees and their 
use in reforestation programmes in the Caribbean.
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