Phylogenetic Relationships of the Order Insectivora Based on Complete 12S rRNA Sequences from Mitochondria

Ginny L. Emerson,* C. W. Kilpatrick,† B. E. McNiff,* J. Ottenwalder,‡ and Marc W. Allard^{*,1}

*Department of Biological Sciences, The George Washington University, Washington, DC 20052; †Department of Biology, University of Vermont, Burlington, Vermont 05405; and ‡Proyecto Biodiversidad, Programa de las Naciones Unidas para el Desarrollo, Santo Domingo, Dominican Republic

Accepted for publication April 21, 1999

Despite numerous studies, there is no single accepted hypothesis of eutherian ordinal relationships. Among the least understood mammalian orders is the group Insectivora. Currently, molecular and morphological data are in conflict over the possible monophyly of the living members of Insectivora (lipotyphlans), and the relationships within the group remain largely unresolved. One of the primary criticisms concerning molecular analyses is the noticeable lack of data from a well-sampled group of lipotyphlan insectivores. The mitochondrial 12S rRNA gene has been widely used to resolve interordinal and intraordinal relationships across a variety of mammalian taxa. This study compares 118 complete mammalian 12S rRNA sequences, representing all of the 18 eutherian orders and 3 metatherian orders, and includes as well taxa from each of the six families of lipotyphlan insectivores. Insectivoran lineages are thought to have diverged concurrently with the general radiation of mammalian orders. This study suggests that the 12S rRNA sequences lack the ability to resolve relationships extending into ¹⁰⁰ this period. This would explain the polyphyly, unusual affinities, and low support derived in this and other studies employing 12S rRNA sequences to diagnose relationships among eutherian orders. The results of these analyses suggest that even extensive taxon sampling is insufficient to provide well supported groups among eutherian orders. Additional genes and species sampling will be necessary to elucidate whether the Insectivora form a monophyletic group. © 1999 The Willi Hennig Society

INTRODUCTION

Elucidation of relationships among eutherian mammal orders has proven difficult presumably as a result of a rapid radiation at the end of the Cretaceous period. Despite numerous studies, there is no single accepted hypothesis of eutherian ordinal relationships. Among the least understood mammalian orders is the group Insectivora. These taxa are thought to have originated during the earliest radiation of placental mammals, as a group, and possess numerous primitive features.

¹To whom correspondence should be addressed at 340 Lisner Hall, Department of Biological Sciences, The George Washington University, Washington, DC 20052. Fax 202-994-6100. E-mail mwallard@ gwis2.circ.gwu.edu.

Therefore, resolving relationships within Insectivora may aid in the resolution of those relationships among the remaining eutherian orders. Currently, molecular and morphological data are in conflict over the possible monophyly of the living members of this group (Lipotyphla sensu Butler, 1988), and the relationships within the group remain largely unresolved (Butler, 1988; Novacek, 1986; MacPhee and Novacek, 1993; George and Sarich, 1994; Springer *et al.*, 1997). One of the primary criticisms concerning molecular analyses is the noticeable lack of data from a well-sampled group of lipotyphlan insectivores. Most studies have included only one or two insectivore taxa. If monophyly is to be properly assessed for this order, a broader range of sampling will be required.

The mitochondrial 12S rRNA gene has been widely used to resolve interordinal and intraordinal relationships across a variety of mammalian taxa (Allard et al., 1992; Springer and Kirsch, 1993; Douzery and Catzeflis, 1995; Lavergne et al., 1996). Indeed, a recent assessment of secondary structure and patterns of evolution among 49 complete mammalian 12S rRNA sequences concluded that the gene should provide resolution for divergence events occurring up to 100 million years ago (Springer and Douzery, 1996). In the present study, we have compiled 118 complete mammalian 12S rRNA sequences representing all of the 18 eutherian orders and 3 additional metatherian orders. In addition, each of the six families of lipotyphlan insectivores is included in an effort to assess the monophyly of Lipotyphla.

MATERIALS AND METHODS

Sequences of the mitochondrial 12S rRNA gene were obtained for 106 taxa through GenBank, one from a separate website, three from Tanhauser *et al.* (1985), and eight were produced in our lab (Table 1). The range of taxa includes at least one representative for each of the 18 orders of eutherian mammals and four members of Metatheria, which compose the outgroup. The sequences were compiled from published data and were brought together to provide a greater amount of sampling and comparable variation than previous studies of the 12S rRNA gene.

The 118 sequences were aligned by hand, with the

[07/01/2023]. See the Te

exception of a highly variable region located near the 3'end of the gene (positions 904-1008). This region was aligned using the alignment program Clustal W 1.6 (Thompson et al., 1994). The alignment DS38659 is available from EMBL upon request by electronic mail to NetServ@EBI.AC.UK. A maximum parsimony analysis was conducted by performing 100 heuristic searches utilizing the random addition sequence option and equal weighting in PAUP 3.1.1 (Swofford, 1993). This method was chosen due to the large number of taxa. Support for groups was then assessed by the parsimony jackknifing program XAC (Farris et al., 1996), set for 10,000 replicates, with branch swapping of five randomly selected addition sequences per replicate (10000*/5), and a cut of 50%. The resulting tree was then reconstructed using MacClade 3.0 (Maddison and Maddison, 1992). The four metatherian taxa Didelphis virginiana, Macropus giganteus, Macropus robustus, and Dromiciops gliroides were used to root trees in analyses conducted with both PAUP 3.1.1 and XAC programs.

RESULTS

Parsimony analysis of the 12S rRNA data found 30 equally parsimonious trees. In the strict consensus of these trees, the six families of the order Insectivora are polyphyletic and scattered throughout the tree (Fig. 1). The two hedgehogs (family Erinaceidae) group together at the base of the eutherian clade; the two tenrecs (Tenrecidae) form a sister group to the golden mole (Chrysochloridae); the tenrecs and golden mole together, along with the tarsier, elephant shrew, and aardvark, fall sister to the Paenungulata clade; the shrew (Soricidae) stands alone as sister to a monophyletic Carnivora; the hairy-tailed mole (Talpidae) is sister to two megachiropteran bats; and the solenodon (Solenodontidae) is positioned outside a large group of rodents.

Although certainly intriguing, most of these relationships are not well supported by parsimony jackknifing. Only one interordinal relationship, a trichotomy composed of Proboscidea, Hyracoidea, and Sirenia (e.g., Paenungulata), is well supported by parsimony jackknifing with a group frequency of 79 (Fig. 2). Two other interordinal groups are supported less: Dermoptera

TABLE 1

Order	Abbreviation/species	Common name	GenBank Accession No; reference
Artiodactyla	BTA Bos taurus	Cow	J01394; Anderson et al. (1982)
Artiodactyla	BGR Bos grunniens	Yak	No number; Tanhauser (1985)
rtiodactyla	CHI Capra hircus	Goat	M55541; Kraus and Miyamoto (1991)
rtiodactyla	DDC Damaliscus dorcas	Bontebok	M86499; Allard et al. (1992)
rtiodactyla	TIM Tragelaphus imberbis	Lesser kudo	M86493; Allard et al. (1992)
rtiodactyla	MKI Madoqua kirki	Kirk's dikdik	M86495; Allard et al. (1992)
rtiodactyla	GTH Gazella thomsoni	Thomson's gazelle	M86501; Allard et al. (1992)
rtiodactyla	KEL Kobus ellipsiprymnus	Waterbuck	M86497; Allard <i>et al.</i> (1992)
rtiodactyla	CMA Cephalophus maxwelli	Maxwell's duiker	M86498; Allard <i>et al.</i> (1992)
rtiodactyla	OGA Oryx gazella	Gemsbok	M86500; Allard <i>et al.</i> (1992)
rtiodactyla	AME Aepyceros melampus	Impala	M86496; Allard <i>et al.</i> (1992)
rtiodactyla	BTR Boselaphus tragocamelus	Nilgai	M86494; Allard <i>et al.</i> (1992)
rtiodactyla	MRE Muntiacus reevesi	Chinese muntjac	M35877; Miyamoto <i>et al.</i> (1990)
rtiodactyla	CUN Cervus unicolor	Sambar White tailed door	M35875; Miyamoto et al. (1990) M25874; Miyamoto et al. (1990)
rtiodactyla	UVI Odocolleus virginianus	White-tailed deer	M35874; Miyamoto <i>et al.</i> (1990)
rtiodactyla	A M Antileconre emericano	Dronghorn ontolono	M55540; Whyamoto <i>et al.</i> (1990)
rtiodactyla	AAM Antilocapra americana TNA Tragulus popu	Mouse deer	M55520; Kraus and Miyamoto (1991)
rtiodactyla	SSC Sus scrofa	Dig	No number: Tanhausar (1985)
rtiodactyla	CCA Ciraffa camelonardalis	r ig Ciraffo	No number: Tanhauser (1985)
rtiodactyla	TTA Tavassu tajacu	Collared peccary	X86944: Douzery and Catzeflis (1995)
arnivora	HAI Hernestes auronunctatus	Small Indian mongoose	Y08506: Ledie and Arnason (1996)
arnivora	FCO Felis concolor	Mountain lion	U_{33495} : Springer <i>et al.</i> (1995)
arnivora	FCA Felis catus	Domestic cat (1)	U20753: Lopez et al. (1996)
arnivora	FDO Felis domesticus	Domestic cat (2)	Y08503: Ledie and Arnason (1996)
arnivora	PTI Panthera tigris	Tiger	Y08504: Ledje and Arnason (1996)
arnivora	PLE Panthera leo	Lion	Y08505: Ledje and Arnason (1996)
arnivora	CFA Canis familiaris	Domestic dog	Y08507: Ledie and Arnason (1996)
arnivora	VVU Vulpes vulpes	Red fox	Y08508: Ledie and Arnason (1996)
arnivora	BGA Bassaricyon gabbii	Olingo	Y08509; Ledje and Arnason (1996)
arnivora	PLO Procyon lotor	Raccoon	Y08510; Ledje and Arnason (1996)
arnivora	AFU Ailurus fulgens	Lesser (red) panda	Y08511; Ledje and Arnason (1996)
arnivora	ELU Enhydra lutris	Sea otter	Y08512; Ledje and Arnason (1996)
arnivora	MEL Meles meles	European badger	Y08517; Ledje and Arnason (1996)
arnivora	MVI Mustela vison	American mink	Y08514; Ledje and Arnason (1996)
arnivora	MST Mustela nivalis	Least weasel	Y08515; Ledje and Arnason (1996)
arnivora	MPU Mustela putorius	Domestic ferret	Y08516; Ledje and Arnason (1996)
arnivora	MME Mephitis mephitis	Striped skunk	Y08517; Ledje and Arnason (1996)
arnivora	SPU Spilogale putorius	Spotted skunk	Y08518; Ledje and Arnason (1996)
arnivora	UAR Ursus arctos	Brown bear	Y08519; Ledje and Arnason (1996)
arnivora	UAM Ursus americanus	American black bear	Y08520; Ledje and Arnason (1996)
arnivora	AML Ailuropoda melanoleuca	Giant panda	Y08521; Ledje and Arnason (1996)
arnivora	PVI Phoca vitulina	Harbor seal	X63726; Arnason and Johnsson (1992)
arnivora	HGR Halichoerus grypus	Grey seal	X72004; Arnason and Gullberg (1993)
arnivora	LWE Leptonychotes weddelli	Weddell seal	Y08522; Ledje and Arnason (1996)
arnivora	MLE Mirounga leonina	Southern elephant seal	Y08523; Ledje and Arnason (1996)
arnivora	MSC Monachus schauinslandi	Hawaiian monk seal	Y08524; Ledje and Arnason (1996)
arnivora	ZCA Zalophus californianus	California sea lion	YU8525; Ledje and Arnason (1996)
arnivora	AGA Arctocephalus gazella	Antarctic fur seal	108526; Ledje and Arnason (1996)
arnivora	AFU Arctocephalus torsteri	New Lealand fur seal	YU8527; Ledje and Arnason (1996)
etacea	SCO Stenella coeruleoalda	Striped dolpnin	X78168; Douzery (1993)
etacea	Dr H Dalaenoptera physalus	rinback Whate	A01143; AFRASON <i>et al.</i> (1991) V72204: Arrason and Cullborg (1992)
piroptoro	Divio Dalaenoptera musculus	Dive wildle	ATALOS, AMASON AND GUIDERS (1993)
Mogachirortari	NAL Mustimons albimator	Tube need for it hat	LIG1077: Springer and Derrow (1990)
Megachiroptera	INAL INYCUMENE AIDIVENTER	Tupe-nosed fruit bat Losobopoult's reveatta	A E152000: MoNiff and Alland (1996)
Microchiroptera	RLE ROUSELLUS LESCHEHAULU FELL Entascius fuscus	Brown bat	AF133000, WUNIII and Allard (1998) U61092: Springer and Dougers (1996)

TABLE 1—Continued

Order	Abbreviation/species	Common name	GenBank Accession No; reference
Dermoptera	CVA Cynocephalus variegatus	Malayan flying lemur	AF152999; McNiff and Allard (1998)
Edentata	CVI Chaetophractus villosus	Hairy armadillo	U61080; Springer and Douzery (1996)
Iyracoidea	PCA Procavia capensis	Rock hyrax	U60184; Lavergne et al. (1996)
Iyracoidea	DDS Dendrohyrax dorsalis	Tree hyrax	X86945; Douzery and Catzeflis (1995)
nsectivora	AAL Atelerix albiventris	Middle-African hedgehog	M95109; Allard and Miyamoto (1992)
nsectivora	AHO Amblysomus hottentotus	Golden mole	M95108; Allard and Miyamoto (1992)
nsectivora	BBR Blarina brevicauda	Short-tailed shrew	M95110; Allard and Miyamoto (1992)
nsectivora	EEU Erinaceus europaeus	Western European hedgehog	X88898; Krettek <i>et al.</i> (1995)
nsectivora	OTA Organistas talpoidas	Pice toproc	AF153004; This article AF152005: This article
nsectivora	TEC Tappac acaudatus	Common toproc	AF153002: McNiff and Allard (1908)
nsectivora	SPA Solenodon paradoxus	Solenodon	AF153006: This article
agomorpha	OCU Orvetolagus cuniculus	European rabbit	http://www.ba.cnr.it/guineanig
Macroscelidea	ERU Elephantulus rufescens	Elephant shrew	U97339: Springer <i>et al.</i> (1997)
Marsupialia	DGL Dromiciops gliroides	Monito del mote	U61073; Springer and Douzery (1996)
Marsupialia	DVI Didelphis virginiana	North American Opossum	Z29573; Janke et al. (1994)
Marsupialia	MGI Macropus giganteus	Eastern Gray kangaroo	X86941; Douzery and Catzeflis (1995)
Marsupialia	MRO Macropus robustus	Wallaroo	Y10524; Janke et al. (1997)
Perissodactyla	EGR Equus grevyi	Grevy's zebra	X86943; Douzery and Catzeflis (1995)
Perissodactyla	ECA Equus caballus	Horse	X79547; Xu and Arnason (1994)
Perissodactyla	EAS Equus asinus	Donkey	X97337; Xu et al. (1996)
Perissodactyla	CSI Ceratotherium simum	Rhinoceros	X86942; Douzery and Catzeflis (1995)
Perissodactyla	RUN Rhinoceros unicornis	Greater Indian rhinoceros	X97336; Xu <i>et al.</i> (1996)
Pholidota	MAN <i>Manis</i> sp	Pangolin	U61079; Springer and Douzery (1996)
Primates	HSA Homo sapiens	Man	J01415; Anderson <i>et al.</i> (1981)
Primates	PPY Pongo pygmaeus	Orangutan Dugmu ahimnangaa	X97707; XU and Arnason (1996)
Primates	PTR Pan tradadutas	Chimpanzoo	X03335: Arnason and Culborg (1906)
Primates	CCO Corilla gorilla	Corilla	X93333, Allason and Guiberg (1990) X93347: Xu and Arnason (1995)
Primates	HLA Hylobates lar	Common gibbon	X99256: Arnason <i>et al.</i> (1996)
Primates	TBA Tarsius bancanus	Western tarsier	AF153001: McNiff and Allard (1998)
Proboscidea	LAF Loxodonta africana	African elephant	U60182: Lavergne <i>et al.</i> (1996)
Proboscidea	EMA Elephas maximus	Indian elephant	X93602; Lavergne et al. (1996)
Rodentia	ACA Acomys cahirinus	Egyptian spiny mouse	X84387; Hanni et al. (1995)
Rodentia	CGA Cricetomys gambianus	Gambian giant pouched rat	X99461; Dubois et al. (1996)
Rodentia	CMI Cricetulus migratorius	Armenian hamster	X84389; Hanni et al. (1995)
Rodentia	GGL Glis glis	Fat dormouse	X84385; Hanni et al. (1995)
Rodentia	HST Hylomyscus stella	African soft-furred rat (1)	X85953; Sourrouille et al. (unpublished
Rodentia	MER Mastomys erythroleucus	African soft-furred rat (2)	X85952; Sourrouille et al. (unpublished
Rodentia	LED Leopoldamys edwarsi	Long-tailed giant rat	X84386; Hanni <i>et al.</i> (1995)
Rodentia	MAU Mesocricetus auratus	Golden hamster	X84390; Hanni et al. (1995)
Rodentia	MINI MICTOTUS MIVAIUS	Snow vole	A99464; DUDOIS <i>et al.</i> (1996)
Rodentia	MINU Mus musculus MSE Mus satulosus	A frican pygmy mouse (1)	JU1420; BIDD et al. (1981) V85040: Sourouille et al. (uppublished)
Rodentia	MMA Mus matthewi	African pygniy mouse (1)	X85950: Sourrouille et al. (unpublished)
Rodentia	MCO Mus cookii	Cook's mouse	X85946 Sourouille et al. (unpublished)
Rodentia	MCR Mus crociduroides	Shrew mouse (1)	X85951: Sourouille et al. (unpublished)
Rodentia	MPA Mus pahari	Shrew mouse (2)	X84383: Hanni <i>et al.</i> (1995)
Rodentia	MSA Mus saxicola	Spiny mouse	X85948; Sourrouille <i>et al.</i> (unpublished
Rodentia	MPL Mus platythrix	Flat-haired jungle mouse	X85947; Sourrouille et al. (unpublished
Rodentia	MAV Muscardinus avellanarius	Hazel mouse	X84384; Hanni et al. (1995)
Rodentia	NRU Nesomys rufus		X99462; Dubois et al. (1996)
Rodentia	PLU Peromyscus leucopus	White-footed mouse	X99463; Dubois et al. (1996)
Rodentia	RNO Rattus norvegicus	Norway rat	X14848; Gadaleta et al. (1989)
Rodentia	TGA Tatera kempi gambiana	Large naked-sole gerbil	X84391; Hanni et al. (1995)
Rodentia	HHY Hydrochaeris hydrochaeri	Capybara	U61081; Springer and Douzery (1996)
Rodentia	CPO Cavia porcellus	Domestic guinea pig	L35585; Frye and Hedges (1995)

Phylogenetic Relationships of the Order Insectivora

225

, 1999, 3, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/j

		0	
Order	Abbreviation/species	Common name	GenBank Accession No; reference
Rodentia	URU Uranomys ruddi	White-bellied brush-furred rat	X84388; Hanni <i>et al.</i> (1995)
Scandentia	TGL Tupaia glis	Common tree shrew	AF153003; McNiff and Allard (1998)
Sirenia	DDU Dugong dugon	Dugong	U60185; Lavergne <i>et al.</i> (1996)
Sirenia	TMA Trichechus manatus	Caribbean manatee	U60183; Lavergne et al. (1996)
Tubulidentata	OAF Orcyteropus afer	Aardvark	U97338; Springer et al. (1997)

TABLE 1—Continued

(flying lemur) with an incomplete primate group (lacking the tarsier) at 69, and a group consisting of Lagomorpha (rabbit) and Scandentia (tree shrew) at 62. Cetacea and Perissodactyla are well supported as distinct monophyletic clades. Carnivora also appears as monophyletic, although the group is supported less at a frequency of 70. The tenrec–golden mole clade is the only supported association between insectivoran families (70), while all affinities with other orders are dissolved in parsimony jackknifing.

Because of the large number of equally parsimonious trees recovered, a second analysis was performed using successive weighting, in which the characters were reweighted according to their relative rescaled consistency values using a base weight of 10. After four iterations of successive weighting, this analysis produced eight equally parsimonious trees, the consensus of which (not shown) demonstrates that these eight trees are not a subset of the original 30 but contain structure and associations not found in those trees. For instance, the mole and shrew form a sister group to the Primate-Dermopteran clade after successive weighting. This and other discrepancies provide yet another demonstration of instability and character incongruence throughout the data and corroborate the low support seen in the parsimony jackknifing analysis.

One of the more problematic issues involving analysis of the 12S rRNA gene is constructing a multiple sequence alignment. Specifically, the 12S rRNA gene has several highly variable regions, thus making it difficult to align and ensure that characters are homologous. Many studies have chosen to exclude these regions from analysis for this reason. Others have referred to the complex secondary structure of the gene product to prioritize regions for gap placement based on evidence of covariation in stem regions and the preferential occurrence of indels within loop regions. (Springer *et al.*, 1996; Lavergne *et al.*, 1996). An assessment of the effect of different alignment strategies on tree topology with regard to 12S rRNA may provide more information on the utility of this gene in addressing questions at the ordinal level. In this study we analyzed only one alignment.

Many molecular studies use various a priori weighting strategies to reduce the effects of homoplasy and increase the amount of congruence within and among data sets. This approach has been examined (Allard and Carpenter, 1996; Allard et al., 1999) and shown to be unnecessary in that identical trees were found in both transversion weighted and equally weighted parsimony analyses of complete mitochondrial genomes (see also Eernisse and Kluge, 1993; Honeycutt and Adkins, 1993). However, it also was demonstrated that tree topologies derived from individual mitochondrial genes varied greatly. The results of the analysis presented here suggest that an increased number of taxa is not enough to either overcome the ambiguity present in sequences of the 12S rRNA gene or provide well-supported groups of eutherian orders. Instead, the observed low support may be an indication of weak or conflicting signals within the 12S sequences.

FIG. 1. Strict consensus of 30 most parsimonious trees found through heuristic searches of 100 random stepwise addition replicates. Tree lengths = 8446, CIs = 0.154, HIs = 0.846, RIs = 0.543, and RCs = 0.090 for the 30 trees found.

1999, 3. Downloaded from thrs://onlinelibrary.wiley.comdoi/10.1111/j.096-0031.1999.tb0205.x. by Readcube (Labivia Inc.), Wiley Online Library on (07/01/2023). See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Therefore, these data may be more useful in combination with other molecular and/or morphological data sets.

DISCUSSION

This analysis is in agreement with a recent examination (Springer et al., 1997), demonstrating that the order Insectivora is not monophyletic and corroborates the grouping of a so-called African clade (consisting of paenungulates, aardvarks, elephant shrews, and golden moles), which in this study also includes tarsiers and tenrecs. However, other established orders, as well as the superorder Archonta, also appear to be polyphyletic, while few are shown to be monophyletic. This may be due in part to limited taxon sampling despite the large number of taxa included in the analysis. Springer et al. (1997) presented consistent results using several different genes; however, the sampling in that study was not as extensive as that utilized here and involved only two or three insectivore representatives. Similar to results shown here, few interordinal relationships were recovered, and still fewer were well supported. Most interordinal associations remained unresolved at bootstrap values greater than 75%. If the Insectivora radiated simultaneously with Mammalia, it would stand to reason that the resolution of both groups would prove troublesome. It appears that the 12S rRNA sequences lack the ability to resolve deeper relationships among divergent eutherian lineages. This would explain the polyphyly, unusual affinities, and low support derived in this and other recent molecular studies also using 12S rRNA sequences and describing similar results (Douzery and Catzeflis, 1995; Lavergne et al., 1996; Springer et al., 1997; McNiff and Allard, 1998). Additional genes and species sampling will be necessary to clearly elucidate whether the Insectivora form a monophyletic group and determine if the African clade will withstand further scrutiny. The results of this analysis suggest that an increased number of taxa is insufficient to provide well-supported groups library.wiley.com/doi/10.1111/j.

999.tb00265.x by Readcube (Labtiva

among eutherian orders by overcoming the ambiguity present in sequences of the 12S rRNA gene. To provide better resolution, these sequences will need to be analyzed together with other genes and/or morphological data in a combined analysis.

ACKNOWLEDGMENTS

We thank Rodney Honeycutt for his editorial contributions. This research was funded by NSF Grant DEB-9629319 to M.W.A.

REFERENCES

- Allard, M. W., and Miyamoto, M. M.(1992). Testing phylogenetic approaches with empirical data as illustrated with the parsimony method. *Mol. Biol. Evol.* **9**, 778–786.
- Allard, M. W., Miyamoto, M. M., Jarecki, L., Kraus, F., and Tennant, M. R. (1992). DNA systematics and evolution of the artiodactyl family Bovidae. *Proc. Natl. Acad. Sci. USA* **89**, 3972–3976.
- Allard, M. W., and Carpenter, J. M. (1996). On weighting and congruence. *Cladistics* **11**, 1–16.
- Allard, M. W., Farris, J. S., and Carpenter, J. M. (1999). Congruence among mammalian mitochondrial genes. *Cladistics* **15**, 75–84.
- Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H. L., Coulson, A. R., Drouin, J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J. H., Staden, R., and Young, I. G. (1981). Sequence and organization of the human mitochondrial genome. *Nature* **290** (5806), 457–465.
- Anderson, S., de Bruijn, M. H., Coulson, A. R., Eperon, I. C., Sanger, F., and Young, I. G. (1982). Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. *J. Mol. Biol.* **156** (4), 683–717.
- Arnason, U., Gullberg, A., and Widegren, B. (1991). The complete mucleotide sequence of the mitochondrial DNA of the fin whale, *Balaenoptera physalus. J. Mol. Evol.* **33** (6), 556–558.
- Arnason, U., and Johnsson, E. (1992). The complete mitochondrial DNA sequence of the harbor seal, *Phoca vitulina. J. Mol. Evol.* 34 (6), 493–505.
- Arnason, U., and Gullberg, A. (1993). Comparison between the complete mtDNA sequences of the blue and the fin whale, two species that can hybridize in nature. *J. Mol. Evol.* **37** (4), 312–322.

FIG. 2. Supported groups assessed by 10,000 parsimony jackknifing replicates. Numbers to the left of each node indicate group frequencies. Only groups with frequencies higher than 0.5 are shown. Taxa in bold are members of the lipotyphlan Insectivora.

- Arnason, U., Xu, Xu, X., and Gullberg, A. (1996). Comparison between the complete mitochondrial DNA sequences of Homo and the common chimpanzee based on nonchimeric sequences. J. Mol. Evol. 42 (2), 145–152.
- Bibb, M. J., Van Etten, R. A., Wright, C. T., Walberg, M. W., and Clayton, D. A. (1981). Sequence and gene organization of mouse mitochondrial DNA. *Cell* 26 (2 Pt 2), 167–180.
- Butler, P. M. (1988). Phylogeny of the Insectivores. *In* "The Phylogeny and Classification of the Tetrapods (M. J. Benton, Ed.), Vol. 2., pp. 117–141. Mammals. Clarendon, Oxford New York.
- Douzery, E. (1993). Evolutionary relationships among Cetacea based on the sequence of the mitochondrial 12S rRNA gene:Possible paraphyly of toothed-whales (odontocetes) and long separate evolution of sperm whales (Physteridae). *Life Sci.* **316**, 1511–1518.
- Douzery, E., and Catzeflis, F. M. (1995). Molecular evolution of the mitochondrial 12S rRNA in Ungulata (mammalia). J. Mol. Evol. 41 (5), 622–636.
- Dubois, J. Y., Rakotondravony, D., Hinni, C., Sourrouille, P., and Catzeflis, F. M. (1996). Molecular evolutionary relationships of three genera of Nesomyinae, endemic rodent taxa from Madagascar. J. Mamm. Evol. 3, 239–260.
- Eernisse, D. J., and Kluge, A. G. (1993). Taxonomic congruence versus total evidence, and Amniote phylogeny inferred from fossils, molecules, and morphology. *Mol. Biol. Evol.* **10** (6), 1170–1195.
- Farris, J. S., Albert, V. A., Kallersjo, M., Lipsocomb, D., and Kluge, A. G. (1996). Parsimony jackknifing outperforms neighbor-joining. *Cladistics* 12, 99–124.
- Frye, M. S., and Hedges, S. B. (1995). Monophyly of the order Rodentia inferred from mitochondrial DNA sequences of the genes for 12S rRNA, 16S rRNA, and tRNA-valine. *Mol. Biol. Evol.* 12 (1), 168–176.
- Gadaleta, G., Pepe, G., De Candia, G., Quagliariello, C., Sbisa, E., and C. Saccone, (1989). The complete nucleotide sequence of the *Rattus norvegicus* mitochondrial genome: Cryptic signals revealed by comparative analysis between vertebrates. *J. Mol. Evol.* **28** (6), 497–516.
- George, S. B., and Sarich, V. M. (1994). Albumin evolution in the Soricinae and its implications for the phylogenetic history of the Soricidae. *In* "Advances in the Biology of Shrews" (J. F. Merit, G. L. Kirkland, and R. K. Rose, Eds) pp. 289–294. Special Publ., Carnegie Museum of Natural History, Pittsburgh, PA.
- Hanni, C., Laudet, V., Barriel, V., and Catzeflis, F. M. (1995). Evolutionary relationships of Acomys and other murids (Rodentia, Mammalia) based on complete 12S rRNA mitochondrial gene sequences. *Israel J. Zool.* **41**, 131–146.
- Hixson, J. E., and Brown, W. M. (1986). A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: Sequence, structure, evolution, and phylogenetic implications. *Mol. Biol. Evol.* **3** (1), 1–18.
- Honeycutt, R. L., and Adkins, R. M. (1993). Higher level systematics of Eutherian mammals: An assessment of molecular characters and phylogenetic hypotheses. *Annu. Rev. Ecol. Syst.* 24, 279–305.

Janke, A., Feldmaier-Fuchs, G., Thomas, W. K., von Haeseler, A. and

Paabo, S. (1994). The marsupial mitochondrial genome and the evolution of placental mammals. *Genetics* **137** (1), 243–256.

- Janke, A., Xu, X., and Arnason, U. (1997). The complete mitochondrial genome of the wallaroo (*Macropus robustus*) and the phylogenetic relationship among Monotremata, Marsupialia, and Eutheria. *Proc. Natl. Acad. Sci. USA* 94 (4), 1276–1281.
- Kraus, F., and Miyamoto, M. M. (1991). Rapid cladogenesis among the pecoran ruminants: Evidence from mitochondrial DNA sequences. Syst. Zool. 40, 117–130.
- Krettek, A., Gullberg, A., and Arnason, U. (1995). Sequence analysis of the complete mitochondrial DNA molecule of the hedgehog, *Erinaceus europaeus*, and the phylogenetic position of the Lipotyphla. J. Mol. Evol. **41** (6), 952–957.
- Lavergne, A., Douzery, E., Stichler, T., Catzeflis, F. M., and Springer, M. S. (1996). Interordinal mammalian relationships: Evidence for paenungulate monophyly is provided by complete mitochondrial 12S rRNA sequences. *Mol. Phylogenet. Evol.* 6 (2), 245–258.
- Ledje, C., and Arnason, U. (1996). Phylogenetic relationships within caniform carnivores based on analyses of the mitochondrial 12S rRNA gene. *J. Mol. Evol.* **43** (6), 641–649.
- Lopez, J. V., Cevario, S., and O'Brien, S. J. (1996). Complete nucleotide sequences of the domestic cat (*Felis catus*) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. *Genomics* 33 (2), 229–246.
- MacPhee, R. D. E., and Novacek, M. J. (1993). Definition and relationships of Lipotyphla. *In* "Mammal Phylogeny: Placentals" (F. S. Szalay, M. J. Novacek, and M. C. McKenna, Eds), pp. 13–31. Springer-Verlag, New York.
- Maddison, W. P., and Maddison, D. R. (1992). "MacClade." Version 3.04, documentation and program. Sinauer Associates, Sunderland, MA.
- McNiff, B. E., and Allard, M. W. (1998). A test of Archonta monophyly and the pylogenetic utility of the mitochondrial gene 12S rRNA. *Am. J. Phys. Anthro.* **107**, 225–241.
- Miyamoto, M. M., Kraus, F., and Ryder, O. A. (1990). Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences. *Proc. Natl. Acad. Sci. USA* 87 (16), 6127–6131.
- Novacek, M. J. (1986). The skull of Leptictid insectivorans and the higher level classification of eutherian mammals. *Bull. Am. Mus. Nat. Hist.* **183**, 1–112.
- Sourrouille, P., Hanni, C., Ruedi, M., and Catzeflis, F. M. Molecular systematics of *Mus crociduroides*, an endemic mouse of Sumatra (Muridae: Rodentia). Unpublished.
- Springer, M. S., and Kirsch, J. A. (1993). A molecular perspective on the phylogeny of placental mammals based on mitochondrial 12S rRNA sequences, with special reference to the problem of the Paenungulata. J. Mammal. Evol. 1, 149–166.
- Springer, M. S., Hollar, L. J., and Burk, A. (1995). Compensatory substitutions and the evolution of the mitochondrial 12S rRNA gene in mammals. *Mol. Biol. Evol.* **12** (6), 1138–1150.
- Springer, M. S., and Douzery, E. (1996). Secondary structure and patterns of evolution among mammalian mitochondrial 12S rRNA molecules. J. Mol. Evol. 43 (4), 357–373.
- Springer, M. S., Cleven, G. C., Madsen, O., de Jong, W. W., Waddell,

V. G., Amrine, H. M., and Stanhope, M. J. (1997). Endemic African mammals shake the phylogenetic tree. *Nature* **388**, 61–64.

- Swofford, D. L. (1993). "PAUP, phylogenetic analysis using parsimony." Version 3.1.1, Computer program distributed by the Illinois Natural History Survey, Champaign, IL.
- Tanhauser, S. (1985). "Evolution of Mitochondrial DNA: Patterns and Rate of Change." PhD dissertation, University of Florida, Gainesville.
- Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 22, 4673–4680.

Xu, X., and Arnason, U. (1994). The complete mitochondrial DNA

sequence of the horse, *Equus caballus*: Extensive heteroplasmy of the control region. *Gene* **148** (2), 357–362.

- Xu, X., and Arnason, U. (1995). A complete sequence of the mitochondrial genome of the Western lowland gorilla. *Mol. Biol. Evol.* **3**, 691–698.
- Xu, X., and Arnason, U. (1996). The mitochondrial DNA molecule of Sumatran orangutan and a molecular proposal for two (Bornean and Sumatran) species of orangutan. *J. Mol. Evol.* **43**, 431–437.
- Xu, X., Janke, A., and Arnason, U. (1996). The complete mitochondrial DNA sequence of the greater Indian rhinoceros, *Rhinoceros unicornis*, and the Phylogenetic relationship among Carnivora, Perissodactyla, and Artiodactyla (+ Cetacea). *Mol. Biol. Evol.* **13** (9), 1167–1173.