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PARALLEL BEHAVIORAL DIVERGENCE WITH MACROHABITAT IN ANOLIS
(SQUAMATA: DACTYLOIDAE) LIZARDS FROM THE DOMINICAN REPUBLIC

KATHERINE E. BORONOW,1 IAN H. SHIELDS,2 AND MARTHA M. MUÑOZ3*

ABSTRACT. The ecomorph concept of the adaptive radiation of Caribbean anoles is characterized by a suite of

behavioral, ecological, and morphological traits that are tightly linked to microhabitat use in lizards. However, most

studies on the adaptive radiation of anoles have been conducted in a single macrohabitat type—lowland tropical

forests. Because behavior can help organisms cope with different environmental conditions, we can predict that there

will be key shifts in behavior within ecomorphs when examined across different macrohabitats, although this idea

remains empirically underexplored. Here we utilized the replicated evolution of montane endemics from a primarily

lowland species in a clade of trunk–ground Anolis lizards to test the hypothesis that shifts in basking behavior,

wariness, and display behavior accompany divergence into montane habitats. The montane specialists A. armouri

and A. shrevei each independently evolved from the primarily lowland dwelling A. cybotes in two widely separated

mountain chains on the island of Hispaniola. We found evidence for a convergent behavioral response to the high-

altitude macrohabitat: A. armouri and A. shrevei spend more time basking, utilize more open environments, and are

warier than lowland A. cybotes. We also found divergence in display behavior in A. shrevei. We detected no evidence

of divergence in locomotor behavior with elevation among active lizards. Together, our results suggest that the

ecomorph concept would be enriched by extending observations of behavior (and other aspects of the phenotype)

into different macrohabitats. Future work should focus on whether the observed behavioral shifts are clinal,

reflecting local adaptation within A. cybotes, or fixed differences between the lowland generalist and montane

species. Adaptation to the macrohabitat has previously been underappreciated as a source of behavioral diversity in

Anolis lizards; this study is the first step toward documenting intraecomorph behavioral variation across divergent

habitats.
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INTRODUCTION

Organisms entering novel macrohabitats

(i.e., environments that differ markedly in

factors such as climate, soil or water chem-

istry, vegetation cover, or a combination of

factors) must adapt to a suite of differing
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environmental conditions with physiological,
morphological, or behavioral changes. Stud-
ies on phenotypic divergence across macro-
habitats have typically focused on
physiological divergence (Gaston and
Chown, 1999; Givnish et al., 2004; Barrett
et al., 2011) and morphological divergence
(Smith et al., 1997; Ogden and Thorpe, 2002;
Langerhans et al., 2003); evidence for behav-
ioral divergence, however, remains compara-
tively understudied (but see Kirschel et al.,
2011; Kozlovsky et al., 2014; Muñoz and
Losos, 2018). Studies of behavioral diver-
gence across elevation are particularly useful
in the light of climate change, because habitat
tracking will push organisms into novel
macrohabitats, unless the macrohabitats
themselves migrate (e.g., as with forest trees)
(Larsen, 2012; Frishkoff et al., 2015).
Species occupying altitudinal gradients are

excellent models for studying adaptation to
environmental variation. Altitudinal gradi-
ents are characterized by dramatic shifts in
macrohabitat: climatic factors structure plant
communities into a series of biomes (Körner,
2007; Martin et al., 2011), and these biomes
support unique animal communities. Species
that are found along wide elevational gradi-
ents are either composed of generalist popu-
lations (each adapted to a wide range of
conditions) or of populations that are spe-
cialized to their local conditions.
The Caribbean radiation of Anolis lizards

is well known for the replicated evolution of
microhabitat specialists, termed ecomorphs,
on islands in the Greater Antilles (Cuba,
Hispaniola, Jamaica, and Puerto Rico)
(Williams, 1983; Losos et al., 1998). Mem-
bers of each ecomorph are characterized by
their convergent morphology and structural
microhabitat use (e.g., twig, tree trunk,
grass) (Williams, 1983; Losos et al., 1998;
Mahler et al., 2013). Species within an
ecomorph category also share behavioral
adaptations to structural microhabitat: loco-

motor behavior, foraging mode, and territo-
rial overlap are all associated with ecomorph
type (Moermond, 1979; Losos, 1990; John-
son et al., 2008, 2010). Ecomorph members
do not, however, converge in climatic
preferences or requirements (Ruibal, 1961;
Rand, 1964a; Williams, 1972; Hertz et al.,
2013). Rather, members of each ecomorph
have diversified to inhabit a broad range of
macrohabitats. By examining behavioral
divergence within an ecomorph class across
a wide altitudinal range, we can broaden our
understanding of ecomorph evolution, which
has most often focused on between-eco-
morph divergence.
The cybotoids—a clade of trunk–ground

anoles from the Caribbean island of Hispa-
niola—have the greatest altitudinal distribu-
tion of any Caribbean Anolis lineage, as they
are found from sea level to over 3,000 m
(Schwartz, 1989; Glor et al., 2003) and
therefore occupy a wide range of macro-
habitats. In this study, we focus on the
occupants of the altitudinal extremes: Anolis
cybotes from lowland mesic forest and A.
shrevei and A. armouri from high-altitude
pine forest in the Cordillera Central and
Sierra de Baoruco, respectively. Anolis shrevei
and A. armouri are phylogenetically nested
within A. cybotes (Glor et al., 2003; Wollen-
berg et al., 2013), each predicted to have
evolved independently from an ancestor
ecologically and morphologically similar to
A. cybotes. Thus, A. shrevei and A. armouri,
which occupy widely separated mountain
chains, each represent an evolutionarily inde-
pendent replicate of adaptation to high
elevation from a low-elevation ancestor. Each
montane cybotoid is more closely related to
the lowland form of A. cybotes from its own
mountain range than either lowland popula-
tion is to each other (Glor et al., 2003;
Wollenberg et al., 2013). Previous work in
this clade found that environmental varia-
tion—particularly in macrohabitat, rather
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than structural microhabitat—partly ex-
plained morphological variation among A.
shrevei, A. armouri, and A. cybotes (Wollen-
berg et al., 2013). This study also found that
the morphological differentiation occurred in
parallel across the two mountain chains,
suggesting an adaptive basis to the morpho-
logical shifts (Wollenberg et al., 2013). Here,
we test the hypothesis that a diverse suite of
behavioral traits has also accompanied the
divergence of A. shrevei and A. armouri into a
high-altitude environment.
Montane cybotoids are known to com-

pensate behaviorally for the colder environ-
ments at high elevation by increasing their
basking behavior (i.e., by spending a greater
proportion of time in sunlight rather than
shade) (Hertz and Huey, 1981; Muñoz et al.,
2014; Conover et al., 2015). Increased
basking behavior is thought to result from
lizards utilizing more exposed and open
perches at high elevation (Hertz and Huey,
1981; Muñoz et al., 2014; Conover et al.,
2015; Muñoz and Losos, 2018), but actual
perch characteristics have not been formally
quantified. We had two main goals for this
study. First, we quantified the ‘‘openness’’ of
lizard perches using three features of struc-
tural habitat: percent ground cover, percent
canopy cover, and vegetation height of the
nearest perch. Second, we tested the hypoth-
esis that, because of their use of more open
habitats, montane lizards are divergent from
lowland lizards in three key behavioral
dimensions: escape behavior (flight initiation
distance), display behavior (dewlap and
pushup rate), and locomotor behavior
(movement types and rates), with directional
hypotheses described below.
Flight initiation distance (FID)—the dis-

tance at which an animal flees from an
approaching predator—is often higher
(meaning lizards will flee when the threat is
farther away) in more open habitats (Martı́n
and López, 1995; Schulte et al., 2004; Cooper

and Wilson, 2007). FID is also typically

inversely correlated with body temperature

in ectotherms (Rand, 1964b; Rocha and

Bergallo, 1990; Smith, 1997; Cooper, 2000),

but mean daytime body temperature in

montane cybotoids is quite similar to low-

elevation lizards (Muñoz and Losos, 2018).

Because lizards at high elevation are thought

to utilize more open perches, we predicted

that flight initiation distance would be

greater in montane habitats.

Anolis lizards engage in visual displays

using colorful, extensible throat fans (termed

dewlaps). These displays, while enabling

social communication, can also make lizards

more vulnerable to predators by making

them more conspicuous (Stuart-Fox et al.,

2003). Indeed, in the presence of predators,

Anolis sagrei reduces the conspicuousness of

its displays by decreasing the amplitude of

their head-bobs (Steinberg et al., 2014).

Anoles that rely heavily on crypsis to avoid

predation exhibit fewer movements (Johnson

et al., 2010). Movement rates in anoles vary

according to microhabitat use (Cooper,

2005) and risk of predation (Lima, 1998;

Hawlena and Pérez-Mellado, 2009; Zani et

al., 2013). On the basis only of increased

vulnerability to predation in more open

habitats, we would expect montane lizards

to perform fewer dewlaps and pushups and

exhibit more cryptic behavior (i.e., fewer

movements per minute) than their lowland

counterparts. We test these hypotheses in

two mountain chains occupied by indepen-

dently evolving taxa and predict divergence

in behavior to occur in parallel across sites.

MATERIALS AND METHODS

Study sites

We conducted our study in the Dominican

Republic, Hispaniola, during June and July

2012. We worked at four study sites,
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consisting of a low- and high-elevation site in

each of two mountain chains: The Sierra de

Baoruco (SB), located in the southwestern

region of the Dominican Republic, and the

Cordillera Central (CC), located in the

central Dominican Republic (Fig. 1). In

both of these mountain ranges, freezing

temperatures and the increased frequency

of fires prevent expansion by tropical tree

species above approximately 2,200 m, and

the vegetation type switches from montane

cloud forest to a monodominant pine forest

(Martin et al., 2011). In contrast, broadleaf

hardwood species dominate at lower eleva-

tions.

Study sites in the SB were located near Los
Patos, Barahona Province (13 m above sea
level; 17857018 00N, 71811017 00W) and Loma
del Toro, Sierra de Baoruco National Park,
Independencia Province. At Loma del Toro,
separate sites were used for the behavioral
observations (2,009 m above sea level;
18817032 00N, 71841052 00W) and flight initia-
tion distance measurements (2,258 m above
sea level; 18817015 00N, 71842045 00W) because
of time constraints and the limited availabil-
ity of suitable habitat at a single elevation.
However, these sites were not qualitatively
different in macrohabitat characteristics.
Study sites in the CC were located near
Francisco Alberto Caamaño Deñó National

Figure 1. Map showing the island of Hispaniola, with the sites for this study numbered. The three images show

Anolis cybotes, A. shrevei, and A. armouri. Anolis cybotes is found in the two lowland sites (Los Patos and Caamaño),

A. shrevei is found at high elevation in the Cordillera Central (Valle Nuevo), and A. armouri is found at high elevation

in the Sierra de Baoruco (Loma de Toro). Map provided by V. Farallo. Photo of A. cybotes by Duncan Irschick
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Park, Azua Province (43 m above sea level;

18826007 00N, 70835033 00W) and Valle Nuevo

National Park, La Vega Province (2,450 m

above sea level; 18843048 00N, 70836000 00W).

Both low-elevation sites were occupied by

A. cybotes in semidisturbed habitats that were

located within or adjacent to mesic forests

(Fig. 1). The majority of lizards in Los Patos

(SB) were observed in minimally maintained

stands of coconut and plantain. Lizards in

Caamaño National Park (CC) were observed

on a variety of tropical hardwood trees and

man-made perches (e.g., fence posts). Loma

del Toro (SB) was occupied by A. armouri,

and Valle Nuevo National Park (CC) was

occupied by A. shrevei (Fig. 1). Lizards in

both high-elevation sites used clearings and

edges surrounded by pine forest. Low- and

high-elevation sites differ considerably in

mean annual, maximum, and minimum

temperatures, with low-elevation sites being

much warmer than high-elevation sites (Table

1). The geographic locations of these popula-

tions in the context of the available phyloge-

netic data suggest that, in each transect, the

low- and high-elevation populations are more

closely related than the lowland A. cybotes

populations are to each other (Glor et al.,

2003).

Habitat openness

To assess habitat structure, we collected

data on vegetation at each individual’s initial

perch site in the flight initiation distance

trials. Canopy cover was estimated using a

spherical densiometer (Lemmon, 1956).

Ground cover was recorded within a 2-m-

diameter circle centered at the perch site.

Visual estimates of percent cover were made

for five categories: bare earth, rock, litter

(vegetative debris), herbaceous plants, and

woody plants. Finally, height of the nearest

vegetation to the lizard’s initial perch was

measured. All measures of the environment

were taken by the same researcher (K.E.B.)

and are similar measures to those employed

by Melville and Swain (2000) and Gifford et

al. (2008). We combined the percent cover of

bare earth and rock to create an index of

exposed substrate. Canopy cover and ex-

posed substrate were arcsine square root

transformed, and height of the nearest

vegetation was natural log transformed

before analysis.

Behavioral observations

Behavioral observations were conducted

on adult male lizards over a period of 2–3

days per site following the methods of

Johnson et al. (2010). We chose to focus on

males to observe display behavior while

avoiding sex-based differences in our data.

We located undisturbed individuals by walk-

ing slowly through the habitat and surveying

the vegetation. Individuals were sexed at a

distance using binoculars on the basis of

TABLE 1. TEMPERATURE PROFILES OF THE FOUR STUDY SITES.a ALL TEMPERATURES ARE GIVEN IN DEGREES CELSIUS.

Mountain range Elevation

Mean

annual

temperature

Maximum

annual

temperature

Minimum

annual

temperature

Mean

observed

temperature

Cordillera Central low 24.8 30.9 17.9 29.3

high 10.1 17.5 1.8 22.1

Sierra de Baoruco low 26.0 32.2 19.3 30.5

high 13.9 21.1 5.4 19.1

aMean, maximum, and minimum annual temperatures of the study sites were extracted from the WorldClim

database (Hijmans et al., 2005) via ArcMap 10.
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diagnostic differences in size, head shape,

and dorsal patterning (Schwartz, 1989).

Behavior was either recorded during obser-

vations in the field or subsequently scored in

the lab on the basis of videotapes of the

lizard. We did not observe any systematic

differences in mean behavioral variables

between field-recorded and videotaped ob-

servations, suggesting that these two meth-

ods provided comparable results. To ensure

that the observation period offered each

lizard adequate time to engage in a normal

range of behaviors, only individuals for

which behavioral observations exceeded 30

min were retained. As a result, the length of

observations per animal ranged from 30 to

64 min. Observations were conducted when

lizards were active, between 0730 and 1800 h.

We did not conduct observations during

rainy conditions. To avoid observing the

same individual multiple times, we caught

each lizard at the end of the observation

period and held it until all the observations

were complete. Because each locality con-

tained many more individuals than were

observed in this study, sequentially removing

lizards was unlikely to have significantly

diminished the social environment for lizards

observed later in each site. Additionally, any

effect of lizard removal on behavior should

be similar across sites.

Display behavior

For each behavioral observation, we

counted all dewlap extensions (each time

the dewlap was extended away from the

body) and pushups (each time the upper

body or head was elevated from the ground).

Head-bobs were grouped with pushups

because the two movements are difficult to

distinguish during observation. We also

recorded the total duration of display during

the observation period.

From these data, we calculated the pro-
portion of time spent displaying (display
time/observation time), pushup rate (number
of pushups/display time), and dewlap rate
(number of dewlaps/display time). Dewlap
rate and pushup rate were natural log
transformed and the proportion of time
spent displaying was arcsine square root
transformed to meet the requirements for
parametric analysis.

Locomotor behavior

During behavioral observations, we also
recorded locomotor activity. We recorded all
movements as walks, runs, or jumps. From
these data, we calculated movements per
minute (MPM, which was calculated as the
sum of walks, runs, and jumps, which were
then divided by the length of the observation
period) and walk, run, and jump frequency
(calculated as a proportion of all move-
ments). Following Losos (1990) and Johnson
et al. (2008), we excluded inactive lizards
(MPM , 0.20) from analysis of MPM and
locomotor frequencies. MPM was natural
log transformed before analysis.

Basking behavior

During each observation, we also record-
ed the basking status of the lizard following
established methods (Hertz, 1992). Basking
status was divided into four categories: full
sun, partial sun, shade, or overcast. Partial
sun indicated that the lizard was partly in
full sun and partly in shade or that the
lizard was in sunlight that was being filtered
through clouds. Overcast conditions were
noted when the sun was completely ob-
scured by clouds. From these data, we
calculated the percentage of time spent
basking (time in full and partial sun/total
nonovercast time) and the proportion of
overcast conditions (time overcast/observa-
tion period). Time spent basking excluded
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overcast conditions because lizards were

unable to select basking sites during these

periods.

Escape behavior

To assess escape behavior, we measured

FID. We walked slowly through the study

area until locating an undisturbed adult male

lizard. Following established methods, one

of the investigators (K.E.B.) approached the

lizard, simulating a predation threat (Martı́n

and López, 1995; Cooper, 2000). The inves-

tigator approached the lizard from the front

or side, depending on the orientation of the

lizard and the available walking routes, at a

calibrated speed of 1.45 6 0.04 m/s (mean 6

SD) until the lizard fled its initial position.

To minimize variation in the stimulus, the

investigator wore similar, neutral-colored

clothing for all trials.

We measured the horizontal distance

between the investigator at the point at

which the lizard fled and the lizard’s initial

location (i.e., FID). We also measured the

substrate temperature at the lizard’s initial

position with a noncontact infrared ther-

mometer (MiniTemp MT6, Raytek Corpo-

ration, Santa Cruz, California) from a

distance of less than 25 cm from the

substrate. Substrate temperature was used

as a proxy for internal body temperature

because the majority of lizards escaped to

refuges where they could not be pursued; as

such, their body temperature could not be

measured. Substrate temperature relates

positively with body temperature in Anolis

lizards, although the correlation may not be

strong (Heatwole et al., 1969). Air temper-

ature was also recorded using a thermocou-

ple (Type T, copper constantan, Omega

Engineering Inc., Stamford, Connecticut)

connected to a temperature logger

(HH603A, Omega).

All trials at a given site were conducted

over 2–3 days between 0900 and 1630 h. FID

trials were conducted concurrently with

behavioral observations at both sites in the

CC. Investigators canvassed different areas

of the site at different times to avoid

disturbing each other; however, it is possible

that a lizard tested for FID was subsequently

observed for basking and display behavior.

To avoid testing the same individual for FID

multiple times, each area within a site was

surveyed only once. Because male A. cybotes

are territorial and have small home ranges

(Johnson, 2007), it is unlikely that we tested

the same individual multiple times at a single

site. We did not conduct trials during

inclement weather. FID was natural log

transformed before analysis.

Analyses

Mountain chain and elevation often inter-

acted to determine the behavioral or environ-

mental pattern. We therefore decided to

perform separate analyses for each mountain

chain to improve our ability to interpret how

behavior and environment vary with respect

to elevation, our main variable of interest.

Additionally, although we hypothesized that

the altitudinal trends in behavior would be

similar between the mountain chains, finding

dissimilar patterns of variation would not be

surprising given their unique biogeographical

histories and independent speciation events.

To summarize habitat structure, we per-

formed a principal component analysis

(PCA) on the correlation matrix of canopy

cover, height of the nearest vegetation, and

exposed substrate. We then tested for differ-

ences in habitat with elevation by performing

Welch’s two-sample t-test on PC1, PC2, and

air temperature.

We used the Wilcoxon rank sum test to

investigate whether the proportion of over-

cast conditions differed with elevation in
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each mountain chain. To determine whether

display and locomotor behavior differ with

altitude, we used Welch’s two-sample t-test

to test for differences in percentage of time

displaying, dewlap rate, pushup rate, and

MPM between low and high elevation in

both mountain chains. To determine wheth-

er the frequency of inactive lizards differed

with elevation in each mountain chain, we

used Fisher’s exact test. To test whether FID

differed with elevation, we used Welch’s two-

sample t-test. We also examined Pearson’s

correlation between FID and substrate

temperature. All analyses were conducted

in R (R Core Development Team, 2012).

RESULTS

Habitat structure

PCA revealed distinct differences in hab-
itat matrix between high and low elevation
(Fig. 2). In both mountain chains, we
recovered two major axes that together
explain 92.6% and 87.9% of the variation
in the data in the CC and SB, respectively
(Table 2). Patterns of loading in PC1 and
PC2 were similar in both mountain chains:
PC1 loaded most strongly for exposed
substrate and canopy cover, with the two
variables being oppositely weighted, whereas
PC2 loaded most strongly for vegetation
height (Table 2). In the SB, vegetation height

Figure 2. Principal component scores projected onto the first two principal component axes with a 95%

confidence ellipse at low elevation (black circles) and high elevation (gray circles) in the Cordillera Central (a) and

Sierra de Baoruco (b). Each point represents an individual lizard’s perch site.

TABLE 2. PRINCIPAL COMPONENT ANALYSIS OF STRUCTURAL HABITAT DATA. THE RESPECTIVE LOADINGS OF EACH TRAIT ON

PC AXES ARE GIVEN, WITH PERCENT VARIANCE EXPLAINED AND CORRESPONDING EIGENVALUES.

Cordillera Central Sierra de Baoruco

PC1 PC2 PC1 PC2

% Exposed substrate 0.91 �0.25 0.88 �0.12
% Canopy cover �0.92 0.16 �0.81 0.48

Height of nearest vegetation �0.41 �0.91 �0.71 �0.68
% Variance explained 62.1 30.5 64.4 23.5

Eigenvalue 1.86 0.91 1.93 0.71
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also loaded strongly on PC1. High-elevation
sites differed significantly on PC1 from low-
elevation sites in both mountain chains (CC:
t¼ 9.84, df¼ 40.49, P , 0.001; SB: t¼ 10.04,
df ¼ 42.34, P , 0.001), which indicates that
the habitat matrix at high elevation contains
more exposed substrate and less canopy
cover. Additionally, in the SB, it indicates
that vegetation height is somewhat lower at
high elevation. However, sites did not differ
in PC2 (CC: t ¼ 1.54, df ¼ 43.25, P ¼ 0.13;
SB: t¼ 1.00, df¼ 42.73, P¼ 0.32), indicating
that vegetation height is not a primary driver
of habitat differences. During our study,
daytime air temperatures were colder at high
elevation (CC: t ¼ 17.92, df ¼ 32.32, P ,

0.0001; SB: t¼ 38.17, df¼ 32.53, P , 0.0001;
Table 1).

Basking behavior

The proportion of time spent basking was
much greater at high elevation in both the
CC and SB (Fig. 3). In the CC, 87% of
lizards basked more than 90% of the time at
high elevation, whereas at low elevation,

88% of lizards spent at least half of their
time in the shade. Similarly, in the SB, 81%
of lizards basked for more than 90% of the
time at high elevation, whereas at low
elevation, 91% of lizards spent at least half
of their time in the shade. This is not an
artifact of sun availability, because the
proportion of overcast conditions did not
differ significantly between low and high
elevation in either mountain chain (CC: W¼
321.5, P ¼ 0.77; SB: W ¼ 395, P ¼ 0.29).
Additionally, lizards from all sites were
sampled throughout the day, so sampling
bias in the timing of observations did not
affect this result.

Escape behavior

We obtained FIDs for 92 lizards (n ¼ 20–
26 individuals per site). In both the CC (t ¼
5.79, df¼ 25.33, P , 0.001) and the SB (t¼
5.64, df ¼ 26.04, P , 0.001), FID is much
greater at high elevation, with lizards fleeing
from the stimulus at a distance more than
three times greater, on average, than that
observed in lizards at low elevation (Fig. 4).

Figure 3. A histogram of the proportion of time spent basking at low elevation (black bars) and high elevation

(white bars) in the Cordillera Central (a) and Sierra de Baoruco (b). Grey bars indicate overlap between the

elevations.
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Even though high-elevation sites have cooler

air temperatures, we found that mean

substrate temperatures were similar between

low- and high-elevation sites. Correspond-

ingly, FID was uncorrelated with substrate

temperature (r , 0.15, P . 0.3).

Display behavior

We observed 109 individuals for an

average of 55.7 6 7.8 (SD) min for a total

of 101.2 h of observation. We found evidence

of divergence in display behavior in the CC,

but not the SB (Table 3, Fig. 5). The

proportion of time spent displaying is low
overall. In the CC, however, we observed

that display rates were higher at low

elevation (0.032 6 0.019) than at high
elevation (0.011 6 0.019). Although lizards

spent less time overall displaying at high

elevation in the CC, both the dewlap rate
and the pushup rate were greater at high

elevation than low elevation (Table 3, Fig.

5), meaning that high-elevation lizards were

packing more dewlaps and pushups into
their displays per unit time. Dewlap rate and

pushup rate in the SB sites appear to be

qualitatively similar to those observed at
low, rather than high, elevation in the CC. In

contrast, the time spent displaying at the SB

sites is more similar to that observed at high

elevation in the CC.

Locomotor behavior

The proportion of inactive lizards (MPM

, 0.20) with elevation in the CC was not

significantly different (Fisher’s exact test, P¼
0.56), but the proportion of inactive lizards

was significantly higher at low elevation in

the SB (Fisher’s exact test, P¼ 0.023) (Table
4). Among active lizards, MPM in the CC or

the SB was not significantly different (CC: t

¼ 0.52, df¼ 35.8, P¼ 0.61; SB: t¼�0.59, df¼
3.7, P ¼0.59), although the statistical power

to detect differences in the SB is low because

Figure 4. Mean flight initiation distance at low

elevation (black circles) and high elevation (gray circles)

in the Cordillera Central and Sierra de Baoruco. Error

bars represent one standard error. *** P , 0.005.

TABLE 3. TEST STATISTICS SHOWING DIVERGENCE IN DISPLAY BEHAVIOR WITH ELEVATION IN THE CORDILLERA CENTRAL BUT

NOT THE SIERRA DE BAORUCO.

Cordillera Central Sierra de Baoruco

df t P df t P

% Time displaying 51.97 4.66 ,0.0001 35.47 0.54 0.60

Dewlap ratea 28.09 4.43 ,0.001 32.18 0.16 0.87

Pushup rateb 28.64 2.43 0.021 18.72 1.54 0.14

aDewlap rate was calculated as the number of dewlaps divided by the observation length (min).
bPushup rate was calculated as the number of pushups divided by the observation length (min).
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of small sample size at low elevation. Walk,

run, and jump frequency for active lizards

are similar across all sites (Table 4).

DISCUSSION

Behavioral patterns within Caribbean

anole ecomorphs are well-established (Losos,

2009; Johnson et al., 2010), but these studies

have been primarily restricted to a single

macrohabitat (i.e., lowland tropical forests).

Nonetheless, previous authors have noted

that behavioral divergence within ecomorphs

across macrohabitats should occur, although

empirical studies have been scant (Johnson

et al., 2008; Ord et al., 2013). Here, we found

that some aspects of behavior (basking and

flight initiation distance) shifted predictably

with elevation in high-elevation lizards, but

display behavior showed mixed patterns, and

locomotor behavior did not change.

At high elevation, A. armouri and A.

shrevei used more exposed perches with less

canopy cover than A. cybotes at low

elevation (Table 2). This finding supports

qualitative field observations from numerous

other studies (Hertz and Huey, 1981; Muñoz

et al., 2014; Conover et al., 2015; Muñoz and

Losos, 2018). We confirm observations from

previous studies that the montane A. armouri

and A. shrevei spent nearly all of their time

basking (Hertz and Huey, 1981; Muñoz et

al., 2014; Conover et al., 2015), whereas

lowland populations of A. cybotes spent the

majority of their time in the shade (Fig. 3).

This observation is consistent with habitat

use: by perching in open habitats at high

elevation, the lizards can readily raise their

body temperature, which is important in

their relatively cold environments (Table 1).

Conversely, A. cybotes might choose shady

perches to prevent overheating in warm

lowland areas (Muñoz et al., 2014).

The use of open perches—as we observed

in both montane cybotoids—is often associ-

Figure 5. Mean proportion of (a) time spent

displaying (display time [min]/observation length [min]),

(b) dewlap rate (dewlap number/display time [min]), and

(c) pushup rate (pushup number/display time [min]) at low

elevation (black circles) and high elevation (gray circles) in

the Cordillera Central and Sierra de Baoruco. Error bars

represent one standard error. * P , 0.05; *** P , 0.005.

2018 11BEHAVIORAL DIVERGENCE ACROSS ALTITUDE IN CYBOTOID ANOLES



ated with greater FIDs (Martı́n and López,
1995; Schulte et al., 2004; Cooper and
Wilson, 2007). Consistent with this expecta-
tion, we found that both A. armouri and A.
shrevei displayed heightened levels of wari-
ness, as assessed by FID, compared with
low-elevation A. cybotes (Fig. 4). One
potential mechanism underlying this finding
could be that colder air temperatures at high
elevation favor longer escape distances be-
cause of impaired performance (Rand,
1964b; Rocha and Bergallo, 1990; Smith,
1997; Cooper, 2000); however, previous
studies report that mean body temperatures
of A. shrevei and A. armouri differ little from
those of low-elevation A. cybotes (Hertz and
Huey, 1981; Muñoz et al., 2014), and we
found no correlation between substrate
temperature (our proxy for body tempera-
ture) and FID. Alternatively, the open
habitat structure at high elevation might
favor increased FID because of increased
conspicuousness to predators or increased
distance to refuges (Martı́n and López, 1995;
Blázquez et al., 1997; Diego-Rasilla, 2003;
Schulte et al., 2004; Vervust et al., 2007;
Cooper and Pérez-Mellado, 2012). The
behavioral shift to more open basking sites
that buffer the montane cybotoids from cold
temperatures (Muñoz and Losos, 2018) may
at the same time expose them to increased
predation risk.
Adaptation to cold environments typically

involves slower growth, delayed maturation,
and investment in fewer, larger offspring
(Angilletta, 2009). Female A. shrevei retain
their eggs significantly longer than A. cybotes
(Huey, 1977), which should increase inter-
clutch interval and decrease fecundity com-
pared with their low-elevation counterparts.
Perhaps to accommodate their reduced
reproductive output or their greater biome-
chanical impairment (bulkier eggs held for
longer periods of time), high-elevation liz-
ards may use behavioral strategies (i.e.,

increased wariness) to mitigate risk and
enhance annual survivorship. Further study
is needed to disentangle the potential contri-
butions of habitat openness, life history, and
predation pressure to this pattern.
We further predicted that wariness in

montane lizards would include a reduction
in display time. We found that display
behavior differed between high- and low-
elevation lizards in the CC, but not in the SB
(Table 3). In the CC, lizards at high elevation
spent less time displaying than lizards at low
elevation (Fig. 5). Reducing the frequency
and duration of broadcast displays and
selectively decreasing conspicuous display
elements are common responses to increased
predation risk (Endler, 1987; Candolin,
1997; Bailey and Haythornthwaite, 1998).
Although we lack evidence on whether
predation risk is higher in montane habitats,
we suspect that lizards in more open habitats
are likely to be more conspicuous to aerial
predators. Although A. shrevei displayed less
often than low-elevation lizards in the CC,
those displays had higher dewlap and push-
up rates (Fig. 5), which might reflect a
tradeoff between a constraint on display
duration and the need to convey information
embedded in display elements. The number
of pushups in a display, for example, is
known to correlate with endurance in Anolis
cristatellus (Leal, 1999); hence, a shorter
display with the same number of pushups
might convey the same message while also
minimizing risk.
It is also possible that the displays are

adapted to differing visual environments or
different spectral sensitivities (Endler, 1992;
Leal and Fleishman, 2002; Ord et al., 2007;
Fleishman et al., 2009) and that these may
differ between the CC and SB. Habitat
openness is a gross indicator of differences
in the visual environments, but careful
measurement of the visual environment
across both mountain chains and a more
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detailed study of signal properties are
required to test these hypotheses (Leal and
Fleishman, 2004). One more possibility is
that another aspect of visual displays such as
head-bobs (which we could not distinguish
from pushups during observations) might
vary with habitat openness. For example, in
the presence of predators, A. sagrei alter
head-bob displays (Steinberg et al., 2014).
Future work that explicitly considers light
environment, predation pressure, and social
context for displays (e.g., territoriality versus
mating) can help elucidate the factors
shaping display behavior within ecomorphs.
Finally, we predicted that heightened

wariness in high-elevation lizards would
result in fewer movements than low-eleva-
tion lizards in response to utilizing more
open habitats. However, locomotor behavior
did not differ in any substantial way among
populations (Table 4). This result suggests
that locomotor behavior might be relatively
stable within ecomorph classes, even across
substantially different macrohabitats (Moer-
mond, 1979; Losos, 1990), although Kahrl et
al. (2018) found that movement rates dif-
fered between A. cybotes (0.4 MPM) and two
more distantly related cybotoids, Anolis
marcanoi and A. longitibialis (both with
~0.1 MPM). Numerous factors beyond
macrohabitat may thus influence variation
in locomotor behavior.
In the case of the cybotoid anoles, macro-

habitat is a strong predictor for basking
behavior and escape behavior. Macrohabitat

may also sometimes influence aspects of
display behavior. The behavioral differences
observed across sites within this ecomorph
encompassed a wide range of behavioral
variation. Vanhooydonck et al. (2007) re-
ported escape distances of 1–1.5 m in various
trunk–ground anole species (A. cristatellus,
A. cooki, A. gundlachi, and A. sagrei),
consistent with our observations of A.
cybotes. In contrast, mean escape distances
in A. armouri and A. shrevei exceeded 3 m,
and many high-elevation lizards fled when
researchers were still 5–10 m away. Low-
elevation lizards frequently allowed research-
ers to get within a meter before attempting to
flee. The variation in FID that we measured
within the cybotoids mirrors the variation
generally observed among ecomorphs
(range: 1–4 m) (Cooper, 2006). For display
behavior, the values obtained in this study
for proportion of time displaying and dewlap
rate span the range observed across 15
species belonging to five ecomorphs (John-
son, 2007; Johnson and Wade, 2010). None-
theless, behavior is a highly flexible
phenotypic trait, and one that can be highly
dependent on context. These observed be-
havioral shifts could reflect fixed differences
between A. cybotes and the two montane
forms, or clinal shifts with elevation. Exam-
ining these same behaviors at intermediate
elevations on Hispaniola would help disen-
tangle these two possibilities.
The ecomorph concept in Anolis lizards is

defined by the association between structural

TABLE 4. MOVEMENTS PER MINUTE (MPM) AND WALK, RUN, AND JUMP FREQUENCY (MEAN 6 SD) IN THE CORDILLERA

CENTRAL AND SIERRA DE BAORUCO.

Mountain Range Elevation na MPM % Walk % Run % Jump

Cordillera Central Low 19 (25) 0.57 6 0.28 0.69 6 0.14 0.07 6 0.08 0.24 6 0.13

High 20 (30) 0.63 6 0.35 0.76 6 0.11 0.06 6 0.07 0.17 6 0.12

Sierra de Baoruco High 15 (31) 0.37 6 0.16 0.74 6 0.19 0.06 6 0.09 0.20 6 0.14

Low 4 (23) 0.44 6 0.24 0.76 6 0.18 0.15 6 0.14 0.10 6 0.08

aNumber of active lizards (MPM � 0.20 used in analysis) out of the total number of lizards observed (in

parentheses).
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microhabitat and morphology, with mem-

bers of the same ecomorph sharing several

morphological, behavioral, and ecological

traits (Losos, 2009). Whereas morphological

diversity within ecomorphs is by definition

limited (Losos, 1990), we find that high- and

low-elevation cybotoids nonetheless diverge

in various ecological and behavioral fea-

tures. Our understanding of anole evolution

can be strengthened and expanded by

continued study of within-ecomorph diver-

gence along environmental clines.

ACKNOWLEDGMENTS

We thank A. Conover, E. Cook, and M.

Landestoy for assistance in the field and J.

Losos for helpful comments on the manu-

script. This study was conducted with all

necessary permits from the Ministry of

Environment and Natural Resources of the

Dominican Republic, and our research was

approved by the Institutional Animal Care

and Use Committee at Harvard University

under protocol 26-11. This work was sup-

ported by a Summer Research Grant from

the David Rockefeller Center of Harvard

University, a Ken Miyata Award from the

Museum of Comparative Zoology at Har-

vard University, and a Sigma Xi Grant-In-

Aid Award to M.M.M.; an Undergraduate

Summer Research Fund award from the

Harvard University Center for the Environ-

ment and a grant from the Harvard College

Research Program to I.H.S.; and the Na-

tional Science Foundation (NSF-DEB

0918975). This material is based on work

supported by National Science Foundation

Graduate Research Fellowships to K.E.B.

and M.M.M.

LITERATURE CITED

Angilletta, M. J. 2009. Thermal Adaptation: A Theoret-

ical and Empirical Synthesis. Oxford, UK: Oxford

University Press.

Bailey, W. J., and S. Haythornthwaite. 1998. Risks of

calling by the field cricket Teleogryllus oceanicus;

potential predation by Australian long-eared bats.

Journal of Zoology 244: 505–513.

Barrett, R. D. H., A. Paccard, T. M. Healy, S. Bergek,

P. M. Schulte, D. Schluter, and S. M. Rogers. 2011.

Rapid evolution of cold tolerance in stickleback.

Proceedings of the Royal Society of London B:

Biological Sciences 278: 233–238.

Blázquez, M. C., R. Rodrı́guez-Estrella, and M. Delibes.

1997. Escape behavior and predation risk of

mainland and island spiny-tailed iguanas (Cteno-

saura hemilopha). Ethology 103: 990–998.

Candolin, U. 1997. Predation risk affects courtship and

attractiveness of competing threespine stickleback

males. Behavioral Ecology and Sociobiology 41: 81–

87.

Conover, A. E., E. G. Cook, K. E. Boronow, and M. M.
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