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Cyclura ricordii is an endemic iguana from Hispaniola and is listed as Critically 

Endangered on the IUCN. The main threats are predation by introduced mammals, 

habitat destruction and hunting. The present study focused on two nesting areas in 

Pedernales in the Dominican Republic. The hypothesis tested is that natal philopatry 

influences dispersal and nest site selection. Monitoring and sampling took place during 

2012-2013. Polymorphic markers were used to evaluate whether natal philopatry limits 

dispersal at multiple spatial scales. Ripley’s K, revealed that nests were significantly 

clustered. Hierarchical AMOVA revealed that nest site aggregations did not explain a 

significant portion of genetic variation. However, Mantel’s tests revealed significant 

positive correlations between genetic and geographic distance. These results indicate that 

natal philopatry limits dispersal at a course spatial scale, but does not influence nest site 

selection at a fine spatial scale. 

Key words: Cyclura ricordii, natal philopatry, nest site fidelity, Ripley’s K, edge 

thinning technique, Mantel test.   
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INTRODUCTION 

‘Philopatry’ is a behavior defined by Mayr (1963) as a general tendency of some 

animals to return to or stay in their home area or natal location. This behavior has been 

observed in many mobile animal species (Bowen et al., 2004; Hueter et al., 2005; 

Freedberg et al., 2005; Brown and Shine, 2007). Philopatric behavior may influence nest 

site selection in females. Hendrickson (1958) proposed that ‘natal homing’, or natal 

philopatry, explains the fidelity that marine turtles show toward their nesting locations. 

Hence, natal philopatry refers to the tendency of a female to return to nest at the site 

where she hatched. Natal philopatry can be contrasted with ‘nest site fidelity’ that refers 

to the tendency of iteroparous females to return to a specific location to nest. Nest site 

fidelity does not necessarily imply natal philopatry. Among reptiles, the taxon for which 

natal philopatry is best supported by genetic and behavioral evidence include sea turtles 

and giant river turtles. Both migrate hundreds to thousands of kilometers from feeding 

grounds to their natal nesting grounds (Bowen and Karl, 1996; Valenzuela, 2001).  

The occurrence and extent of philopatry has important implications for the 

understating of animal dispersal (Bock et al., 1985; Dittman and Quinn, 1996; Ruusila et 

al., 2001; Bolker et al., 2007; Chilvers et al., 2008), their nesting behavior (Bock et al., 

1985; Ruusila et al., 2001; Bowen et al., 2004; Freedberg et al., 2005; Brown and Shine, 

2007; Knapp and Owens, 2008), the identification of important fisheries stocks (Dittman 
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and Quinn, 1996; Hueter et al., 2005; Pawson et al., 2008), and the management and 

conservation of endangered species (Hueter et al., 2005; Knapp and Owens, 2008; 

Chilvers et al., 2008; Salinas-Melgoza et al., 2009). The continued visitation to the same 

location to nest that many animals show may bring some advantages for these species 

persistence as well as disadvantages if these areas were threatened in some way. These 

locations may be important refugia for the maintenance of these species and for 

successful hatching of future generations. Also, the elimination of these locations may 

increase energetic cost to females because of the necessity to disperse in search of new 

locations to nest, and in some cases a new location may not yield the same hatching 

success enjoyed at the preferred site.   

In this study I investigated competing hypotheses designed to explain dispersal 

and nest site selection in the endangered Ricord’s iguana, Cyclura ricordii, to better 

inform conservation management planning for this species. Individuals of Cyclura 

species often nest communally (Iverson et al., 2004), and characterizing key aspects of 

the animal’s life history including its dispersal tendencies, nest and forage site selection, 

and nesting behavior may enhance conservation strategies by identifying critical habitat 

and potential sites to incorporate into yearly monitoring programs. I used neutral 

molecular markers to study aspects of the nesting behavior that are difficult to 

characterize through observation alone.  
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Figure 1.1 Maps of the southwestern region of the Dominican Republic. 

Left image: black dots indicate known locations of Ricord’s iguanas. Right image: green 
lines depict National Park boundaries, and the orange line is the boundary for the 
Jaragua-Bahoruco-Enriquillo Biosphere Reserve (map credit Yolanda León). 

Cyclura ricordii is an endemic vertebrate on Hispaniola, the only island in the 

Caribbean where two species of Cyclura (C. ricordii and C. cornuta) can be found in 

sympatry. These species are the largest native herbivores on the island, and they fulfill a 

crucial ecological role in their dry forest ecosystems as seed dispersers, and by 

contributing to nutrient cycling through foliage grazing (Iverson, 1985; Hartley et al., 

2000; ISG/IUCN, 2002). Cyclura ricordii is critically endangered according to the IUCN 

Red List (2014), and only three natural populations are known in the southwestern areas 

of the Dominican Republic. Additional nesting areas are found across the border near 

Ansé a Pitre, Haiti (Ottenwalder, 1996; Rupp et al., 2009; Figure 1.1). The most recent 

assessment of population size estimated that 2,000 to 4,000 individuals remain in the wild 

(Ottenwalder, 2000). These numbers have likely dropped due to habitat loss associated 
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with infrastructure construction and agricultural development (see Figure 1.2 for 

agricultural development in Los Olivares nesting habitat).  

For the past 10 years a local non-governmental organization (NGO), Grupo 

Jaragua (www.grupojaragua.org.do), has continually monitored C. ricordii at all localities 

except the one on Cabritos Island. The main population under study is in the 

southwestern region of the Dominican Republic near Los Olivares in Pedernales Province 

(Rupp, 2010). Los Olivares is the only area where nesting activity is known (Figure 1.2). 

Nesting at Los Olivares occurs primarily in bottomlands called “fondos” where the 

iguanas excavate their retreats (Arias et al., 2004). Fondos are characterized by fine, red, 

argillic soils with scrub-like vegetation, and an open canopy (Arias et al., 2004). Four 

major fondos are monitored by Grupo Jaragua at Los Olivares: Tierra (10.3 ha), 

Malagueta (47.1 ha), Robinson (25.1 ha) and Jinagosa (0.6 ha) (Rupp et al., 2009; Figure 

1.2). The distinctive soil and nesting ground dimensions are unique, and it is the only area 

where two species of iguana nest sympatrically. 

In this study, dispersal and nest site selection will be evaluated in Fondo de la 

Tierra and Fondo de la Malagueta, which are the two most active sites with over 100 

nests per year at each location since 2004 (Rupp, 2010). These sites differ greatly in their 

nesting dynamics largely due to differences in land use and consequent disturbance. To 

protect and preserve these unique areas, they were both declared as Municipal Protected 

Areas (EMP, for its Spanish name Espacio Municipal Protegido) in the resolution 05-

2005 of the Pedernales Province City Hall (Rupp et al., 2009). Attempts to develop these 

fondos for agricultural purposes were made in 2006 and 2007 (Rupp et al., 2009). 

Moreover, both fondos are heavily impacted by invasive feral cats, dogs and cows. The 
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feral dogs are of special concern given that at least 30 iguanas were killed by dogs in the 

2012 and 2013 nesting seasons combined (José Luis Castillo, pers. comm.). Also, hunting 

pressure for the illegal pet trade has caused these fondos to be hunting “hot spots” 

because of the vulnerability of iguanas during the time of oviposition.  

 

Figure 1.2 Map of Los Olivares in Pedernales Province.  

The figure above shows the locations of the four bottomlands or ‘fondos’ (red squares) 
monitored by Grupo Jaragua. Green lines represent the limits of the protected areas (map 
credit Yolanda León).  

While there are limited data regarding natal philopatry for most iguanids (Bock et 

al., 1985; Rauch, 1988), there is ample information regarding nest site fidelity of Cyclura 

in the Caribbean (Iverson et al., 2004; Knapp & Owens, 2008). Wiewandt (1982) was 

one of the first to anticipate natal philopatry in iguanas. There are no prior records of 

natal philopatry for either species of Cyclura from Hispaniola, but my preliminary data 
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for C. ricordii indicated a high return rate of iguanas to the specified fondos, and this is 

consistent with at least a limited degree of nest site fidelity. Field ecologists have inferred 

that some areas within fondos have greater nest density. In some of these putative clusters 

of nests, multiple females have constructed multiple nest chambers from the same 

entrance tunnel (Ernst Rupp, pers. comm.). Using camera traps, these researchers have 

recorded opportunistic females excavating burrows dug by other females to construct 

their nests. Similar behavior was reported by Rauch (1988) for marine iguanas. The 

presence of these putative clusters may be related to natal philopatric behavior where 

females are nesting in the same nest site from where they hatched.  

While ecological studies are crucial, it is difficult to assess relatedness among 

animals in these studies (Bock et al., 1985; Rauch, 1988; Iverson et al., 2004; Knapp & 

Owens, 2008). Conservation plans for endangered reptiles have benefitted from the use of 

molecular techniques (Bowen et al., 2004; Lee et al., 2007). Molecular analyses can be 

used to assess genetic variation, population structure and infer the genetic health of 

endangered species. Little is known about the status of natural populations of C. ricordii, 

and there are no studies that assess the genetic structure of these populations. To inform 

conservation management planning, current monitoring programs need to be enhanced. 

Implementation of molecular techniques focused on genetic screening and variability of 

these populations are needed if further population declines and chances of extinction are 

to be mitigated. Several conservation efforts have been implemented to help recover the 

species since 2002, when a 5-year Recovery Plan was created (ZOODOM et al., 2002), 

and land in these fondos was purchased to limit further agricultural development in 2002 

(ISG/IUCN, 2002) and 2012. 
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The hypothesis addressed is that philopatry influences dispersal and nest site 

selection for Cyclura ricordii in the Dominican Republic. To test this hypothesis, three 

spatial scales were considered. At the broadest spatial scale natal philopatry could limit 

dispersal between distinct geographic regions, Cabritos Island and Pedernales 

populations. If true, we anticipate that genetic differences between animals located in 

these two geographic regions will be statistically significant. Two other spatial scales 

were assessed to further characterize potential effects of natal philopatry on the species 

population genetic structure. Fondo de la Tierra and Malagueta, the two fondos under 

study, are separated by as little as 1 km, and there are no physical barriers to dispersal 

between them. Any genetic structuring observed between them likely reflects limited 

migration. If philopatric behavior exists at this coarse spatial scale, then significant 

genetic differentiation may be present due to restricted gene flow between fondos. Natal 

philopatry may also influence population dynamics at a finer scale. Nest sites appear to 

occur in aggregations within fondos. Aggregations or clustering of nests may reflect the 

distribution of appropriate nesting habitat. However, it may also result from related 

females returning to nest at or near that site where they themselves emerged. If true, 

hatchlings emerging from nests in the same cluster should be more closely related to each 

other than hatchlings emerging from nests in other clusters. My objectives were to 

determine whether genetic structure occurs on a coarse or a fine spatial scale, and 

whether the observed structure is consistent with natal philopatric behavior.  
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CHAPTER II 

METHODS 

2.1 Study System 

The genus Cyclura, the West Indian rock iguana, inhabits tropical dry forest in the 

Bahamas and Greater Antilles (Alberts, 2000). Species in this genus are among the 

world´s most endangered lizards, primarily as a result of habitat degradation and the 

presence of exotic species (Henderson, 1992). Rock iguanas are the largest native 

herbivores on many of these islands. Within the Iguanidae, 36% are known to nest 

communally (Doody et al., 2009). Iguanas in the genus Cyclura are iteroparous, and 

univoltine (Alberts, 2000). However, Iverson et al. (2004) found for Cyclura cychlura 

inornata that only one in three females nested every year. A typical nesting sequence for 

rock iguanas includes digging an entrance tunnel and chamber, laying eggs, back filling 

the tunnel and defense of the nest (Figure 2.1; Wiewandt, 1982). The nesting season of 

Cyclura ricordii varies slightly from year to year; it has been reported to start as early as 

8 March and continue as late as 16 June (Rupp et al., 2007; Ottenwalder, 2000). The 

incubation period is reported to be 95 to 100 days (Ottenwalder, 2000), and emergence 

has been reported between 10 June and 19 September (Rupp et al., 2007). The average 

clutch size is 12.5 (range 1-23) eggs per nest (Rupp et al., 2007). Females are reported to 

take two to three years to reach sexual maturity and have a mean snout-vent-length (SVL) 
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of 34 cm (Ottenwalder, 2000). Hatchling mean mass is about 30 g (Ottenwalder, 2000), 

and hatching success can be high (highest value recorded is 95.8%; Rupp, 2010). 

Some studies for other Cyclura (Knapp and Owens, 2008) suggest that iguanas 

require well-drained soil and warm terrain for oviposition. When areas flood periodically, 

as can happen during the hurricane season in the Caribbean (1 June through 30 

November), these requirements likely limit the use of the soil for nest excavation because 

nests would get too wet and mortality would increase (Iverson et al., 2004). West Indian 

iguanas, including C. ricordii, inhabit areas of karst limestone with limited areas of sand 

and soil accumulation, and nest site selection can be constrained by the availability of 

appropriate habitat (Knapp & Owens, 2008). Males are highly territorial and the most 

dominant individuals establish home ranges that monopolize the highest quality habitat 

with the best forage and greatest density of females during the nesting season (Pérez-

Buitrago et al., 2010).  



 

10 

 

Figure 2.1 Pictures show Cyclura ricordii during nesting season.   

(A) An adult Cyclura ricordii foraging among cacti, (B) a nesting female preyed upon by 
a feral dog, (C) a nesting female resting while covering the nest, and (D) a nesting female 
completing the covering of the nest and guarding it. 

2.2 Sampling 

Daily systematic surveys were conducted during the 2012 and 2013 nesting and 

hatching season across Fondos de la Tierra and Malagueta in Los Olivares, Pedernales 

Province in southwestern Dominican Republic. These surveys consisted of daily transects 

through the fondos to detect and tag new nests with a number and date (Figure 2.2). Each 

nest was characterized in terms of species, and dates of egg deposition and hatchling 

emergence. The position of each nest was recorded with a Garmin GPS (model VISTA 

HCx - etrex) using the UTM projection in the WGS84 system. Hatchlings were captured 

at emergence with enclosures built from metal flashing around each nest. Daily transects 
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around the fondos were done for opportunistic capture of hatchlings where enclosures 

were not present. Hatchlings were tagged by toe clipping (following Ferner, 1979 and 

modified by Iverson et al., 2006), and the toe clips provided genetic samples that were 

stored in 95% ethanol at ambient temperature. Carcasses from unsuccessful hatching 

were also sampled.  

Adults were sampled from multiple populations, Cabritos Island and Pedernales, 

during field seasons in 2012 and 2013. Tomahawk traps positioned in the areas 

surrounding the fondos allowed for the collection of additional genetic samples from 

adults. Trapping of adults also occurred on Cabritos Island; additional sampling 

techniques were used (e.g., nooses and nets). Blood was drawn from the caudal vein of 

adults, and tissue samples were collected from adult females that were killed by feral 

dogs at Pedernales fondos. Blood was stored in the field at ambient temperature in SDS 

lysis buffer (0.1M Tris-HCl ph 8.0, 0.1M EDTA, 0.01NaCl, SDS 2%; Longmire et al., 

1997). All individuals captured and sampled were released at the site of capture. A total 

of 102 individuals were sampled in 2012, 18 adults and 84 hatchlings. In 2013, a total of 

367 individuals were sampled, including 30 adults and 337 hatchlings. Six additional 

samples of adults from Cabritos Island from 2010 were included (all adults sampled are 

listed in Appendix B). 

2.3 Laboratory Work  

Genomic DNA was extracted from whole blood and tissue samples with a 

Maxwell@ 16 Tissue DNA Purification Kit in a Maxwell® 16 MDx Research Instrument 

(Promega, Mannheim, Germany). Anonymous microsatellites were used to infer patterns 

of population structure and rates of gene flow. Over seventy microsatellite markers were 
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screened and characterized for this species with the 2012 samples of hatchlings and 

adults (all microsatellite markers designed by Rosas et al., 2008; Welch et al. 2011; 

Junghwa et al. 2004; and Lau et al. 2009 were included in the screening). Amplifications 

were conducted with a 2720 Thermal Cycler (AB Applied Biosystems) following 

standardized 3-primer PCR amplification according to Schuelke (2000) and modified by 

Welch et al. (2011) in a total volume of 10 µl (i.e., 7.3 µl of ddH2O, 1.2 µl of master mix 

(10 µM of each dNTPs, 10x Tricine Taq Buffer and ddH2O), 0.04 µl forward primer, 

0.2µl reverse primer, 0.2 µl fluorescent tagged primer, 0.4 U taq polymerase and 1.0 µl of 

DNA template). Fragment analysis was carried out at Arizona State University, and 

alleles were manually annotated with Peak Scanner TM Software v1.0 (Applied 

Biosystems). 

Attempts were also made to develop mtDNA markers because these would be 

especially useful for inferring sex specific patterns of dispersal since the mtDNA is 

strictly maternally inherited. For this study I surveyed a region of the mtDNA bounded 

by ND4 and tRNA LEU for polymorphisms. Samples from Pedernales (16 individuals) 

and Cabritos Island (10 individuals) were sequenced according to Malone et al. (2000) 

using primers ND4 and LEU (Arévalo et al., 1994). There was no additional variation 

beyond that reported by Malone et al. (2000), both haplotypes were observed in both 

populations, and there was insufficient variation within and among populations at this 

locus for a meaningful analysis of fine scale population genetic structure. Hence, this 

locus was dropped from the study.  
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Figure 2.2 Los Olivares nesting habitat in Pedernales.  

Black triangles represent sampled nests and circles un-sampled nests. (A) Fondo de la 
Malagueta nests for 2013 and (B) Fondo de la Tierra nests for 2013. Images to the right 
depict the general habitat features at these locations. 
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2.4 Genetic analysis 

Genepop v. 4.2 was used to detect null alleles for the polymorphic microsatellites 

(Raymond and Rousset, 1995; Rousset, 2008). Loci with null allele frequencies > 0.20 

were removed from fine scale genetic analysis (Dakin and Avise, 2004). I used the 

private allele method (Barton and Slatkin, 1986), corrected for sample size, to estimate 

gene flow (Nm) between the two major fondos. Nm was estimated using the Population 

Genetic Analysis software, Genepop on the web v. 4.2 (Raymond and Rousset, 1995; 

Rousset, 2008). Descriptive statistics for each locus in both adults and hatchlings from 

the Pedernales sites and for adults from Cabritos Island were also calculated. These 

include the number of alleles (Na) per locus, expected and observed heterozygosity (HE 

and HO, respectively) for each locus (Guo and Thompson, 1992), and the inbreeding 

coefficient for each locus (FIS; Weir and Cockerham, 1984; Excoffier et al., 1992). 

Population specific FIS indices using 1023 permutations were also performed. Mean 

values were calculated for HE, HO and FIS locus by locus results and, an additional value 

using a composite value for all of the data at once per population was estimated. All 

descriptive statistics were calculated with Arlequin v. 3.5.1.3 (Excoffier and Lischer, 

2010). For the adjustment of significance thresholds a sequential Bonferroni correction 

was implemented (Holm, 1979).  

2.5 Dispersal between and within geographic regions 

Other F-statistics were calculated at multiple spatial scales with Analysis of 

Molecular Variance (AMOVA) to assess genetic differentiation. The FST between 

geographic regions, Pedernales and Cabritos Island, was estimated (Figure 1.1), and 

tested for statistical significance to evaluate if there is limited dispersal between them. 
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FST between fondos de la Tierra and Malagueta within Pedernales was also estimated and 

its significance assessed to determine if natal philopatry limits dispersal at the coarse 

spatial scale, between fondos, where intra-population genetic differentiation ought to be 

expected. All AMOVA were conducted with Arlequin v. 3.5.1.3 (Weir and Cockerham, 

1984; Excoffier et al., 1992). 

2.6 Spatial structure of nests 

Spatial analysis tested the null hypothesis that nests are distributed randomly 

within each fondo. An alternative hypothesis of non-random distribution was also 

considered. To test these hypotheses spatial point data was obtained from the monitoring 

program of Grupo Jaragua NGO. They provided spatial coordinates of nest positions 

across the years 2008–2013 for Tierra and Malagueta fondos. These analyses were made 

with the ‘spatstat’ guide in R created by Baddeley and Turner (2014). Ripley’s K was 

estimated and tested for significance to determine whether nest distribution within the 

fondos is overdispersed, randomly dispersed or clustered (Ripley, 1977). The function 

K(r) was tested for significant departures from a homogeneous Poisson process, assuming 

complete spatial randomness (CSR) for our dataset (Dixon, 2002). The K(r) function is:  

 𝐾 (𝑟) =  𝜆− 1 𝐸 (2.1) 

where K(r) refers to two dimensional spatial data, λ is the density (number per unit area) 

of events, and E refers to the number of extra events within distance r of a randomly 

chosen event (Ripley, 1976; Ripley, 1977). When a Poisson process is assumed to 

represent CSR, the function can be written in closed-form as (Dixon, 2002): 

 𝐾 (𝑟)  =  𝜋 𝑟2 (2.2) 
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Isotropy or uniformity is a key assumption of this model. For example, 

longitudinal and latitudinal distances should be equally correlated with density (Dixon, 

2002). The function K(r) (Equation 2.2) can also be interpreted as nonstationary given 

that the function is defined in terms of choosing an event randomly (Dixon, 2002). The 

boundaries of the study area are usually arbitrary and ignoring the influence of edge 

effects may produce a K(r) estimator that biases the results (Dixon, 2002). According to 

Dixon (2002) it is best to use the corresponding L(r) function (Equation 2.3) (Doguwa 

and Upton, 1989) because its variance is approximately constant under CSR (Dixon, 

2002) and the function is: 

     𝐿 (𝑟) =  √ 
𝐾(𝑟)

𝜋
  (.3) 

assuming CSR,  𝐿 (𝑟) = 𝑟 .   

Significant departures between L(r) – r can indicate two distinct deviances from a 

random distribution. If L(r) – r < 0, then spatial data points are regularly distributed, or 

overdispersed. If L(r) – r > 0, then points are underdispersed, or show evidence of 

clustering (Dixon, 2002). Because this is inherently a two-tailed test, the significance 

threshold was set appropriately (α = 0.975; Dixon, 2002). To determine statistical 

significance most authors employ the Monte Carlo method (Haase, 1995). To compute 

statistical significance the ‘envelope’ command from the ‘spatstat’ guide was used. The 

envelope command computed 95 simulation envelopes of the summary ‘Kest’ (K 

estimate) to assess the goodness-of-fit of a point process model to the point pattern data 

(Baddeley et al., 2014). The lowest and highest values of K(r) (Equation 2.2) defined a 

lower, Klo(r), and upper, Khi(r), boundaries of a 95% confidence envelope (Haase, 1995). 
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Significant departures from these confidence envelopes indicate that a nonrandom 

distribution of nests may be biologically relevant.  

To further evaluate the scale of aggregation or clustering, I applied the edge 

thinning technique (Keitt et al., 1997) with a modified R script (Appendix A) from 

Brooks (2006). I was able to assign nodes, that refers to the spatial data points (nests), to 

specific aggregations or clusters and estimate the diameter (distance, r) in which these 

nodes where connected. The value of r is iteratively increased until the entire system 

forms part of a single cluster (Brooks, 2006). Edge thinning uses the distribution of 

pairwise distances between nodes, to infer the average distance between nodes that can be 

considered part of a single cluster. The plots will have ‘plateaus’ that represent distances 

where little or no change in the spatial pattern occurs. The minimum distance at which 

each of these plateaus occurs is where the spatial structure will be minimally connected 

(Brooks, 2006). These minimum distances will be referred to as ‘threshold distances’ 

from this point forward. 

If significant clustering is present, then there should be an over representation of 

short and long edges. There should also be an under-representation of edges with 

intermediate length. Each year was evaluated individually to study time-space structuring 

pattern. With the spatial coordinates from 2013, edge thinning technique and molecular 

data were joined to further evaluate spatial structuring within each fondo. If significant 

clustering is observed within each fondo, then the presence of natal philopatry could be 

one of the factors causing this pattern. Other influences on nest site selection such as 

habitat quality could also generate a similar pattern. To test the natal philopatry 

hypothesis, I determined whether genetic differentiation among nests within sites of nest 
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aggregations was smaller than between nests in different aggregation sites within each 

fondo.   

2.7 Spatial genetic structure of nests 

A hierarchical AMOVA was performed to detect differentiation at a finer spatial 

scale within each fondo. The proportion of genetic variance attributable to clusters within 

fondos was estimated and tested for significance. The variance components were defined 

in four hierarchic levels: (i) among clusters (FCT), (ii) among nests within clusters (FSC), 

(iii) among individuals within nests (FIS), and (iv) within individuals (FIT). These 

variance components were assessed with Arlequin v. 3.5.1.3 (Excoffier and Lischer, 

2010). Arlequin implements Wright’s fixation index (FST) to describe the amount of 

genetic variation for each hierarchic level according to Weir and Cockerham (1984).    

2.8 Testing the isolation-by-distance model 

A second approach tested the natal philopatry hypothesis with an Isolation-by-

Distance model (Wright, 1943). Mantel’s test estimates the significance of correlation 

between distance matrices (Mantel, 1967). Here the two distance matrices were genetic 

and geographic distances between individuals. A predictor matrix of pairwise linear 

distances in meters and a dependent matrix of individual pairwise genetic distances were 

created with GenAlEx 6.5 (Peakall and Smouse, 2006 and 2012). To create the pairwise 

genetic distance matrix, Euclidean genetic distance was estimated in GenAlEx through 

the option of Genetic Distance (Codom-Genotypic) (Smouse and Peakall, 1999). To 

create a geographic distance matrix, a pairwise, linear geographic distance matrix was 

created from longitude and latitude coordinates for each sampled individual. The null 
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hypothesis was that the two distance matrices are independent. The alternative hypothesis 

is that of a positive association between the two distance matrices, suggesting the 

presence of isolation-by-distance (Smouse et al., 1986). Two assumptions were made. 

First, that the conditions influencing hatchling fitness (nest quality) are stable at each 

fondo. Second, that the presence of nest aggregations is a consequence of the preference 

of daughters to nest in the same or similar locations as their mothers.     
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CHAPTER III 

RESULTS 

3.1 Sampling 

Two of the three populations of C. ricordii in the Dominican Republic were 

successfully sampled, Cabritos Island and Pedernales. The Pedernales population is 

spread across a large area, and identifying areas with high densities of individuals has 

been challenging. Of the 53 adults sampled (Appendix B), 15 (28.3%) were animals 

killed by dogs, and 12 (22.6%) were captured with Tomahawk traps. On Cabritos Island, 

I collected samples from animals found dead from natural causes (7.5%). The rest of the 

wild captures were made with nooses and nets (41.5%). The sampling success reflects the 

high level of threat these iguanas face, given that 35.8% of the individuals sampled were 

carcasses. Tomahawk traps proved to be a very successful method of capturing wild 

adults on Cabritos Island and in the Pedernales population. 

A total of 26 nests from Malagueta and 23 from Tierra were sampled during 2013, 

and the number of individuals captured per nest ranged from 1 to 23. Some individuals 

were removed from the dataset because of poor DNA quality (i.e., these individuals 

usually came from carcasses of hatchlings found while opening the nest and from 

hatchlings that died before hatching). Appendix B presents the number of hatchlings from 

2013 that were successfully genotyped and included in the analyses. The number of 

individuals per nest ranged from 1 to 15. The 84 hatchlings sampled on 2012 were used 
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for the screening of molecular markers and excluded for further analysis, because they 

only represented a very small area of Fondo de la Tierra and sampling effort could not be 

compared with the 2013 sampling.   

3.2 Microsatellite data 

Samples were genotyped at 14 microsatellite loci found to be variable for C. 

ricordii. The polymorphic markers used were: Ccste05 (Rosas et al., 2008); CIDK135, 

CIDK144 and CIDK184 (Welch et al. 2011); Z106, Z148, Z154 and Z494 (Junghwa et 

al. 2004); and D1, D11 D101, D110, D111 and D140 (Lau et al. 2009). Only CIDK135 

(Welch et al., 2011) was eliminated from further analysis because of the null allele 

frequency p = 0.48 (Dakin and Avise, 2004; Table 3.1). Thirteen polymorphic molecular 

markers were used in the rest of the analyses. 

Table 3.1 Polymorphic microsatellite markers used in this study.  

No. Locus Null allele 
frequency (p) No. Locus Null allele 

frequency (p) 

1 Ccste05 0.06 8 Z494 0.08 
2 CIDK135 0.48 9 D1 0.06 
3 CIDK144 0.08 10 D11 0.05 
4 CIDK184 0.13 11 D101 0.03 
5 Z106 0.13 12 D110 0.11 
6 Z148 0.07 13 D111 0.12 
7 Z154 0.08 14 D140 0.13 

Identifier (No.), locus name (Locus) and null allele frequency (p). In bold, CIDK135 with 
a null allele frequency > 0.20.   

3.3 Genetic variation between geographic regions and between fondos 

The numbers of migrants (Nm) were evaluated between geographic regions and 

between fondos. Gene flow between Cabritos and Pedernales populations was below the 
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value of one (Nm = 0.99, Table 3.2). For the estimation of gene flow between Malagueta 

and Tierra the value exceeded one (Nm = 8.38), which signifies that local levels of gene 

flow between fondos is present (Table 3.2). The level of gene flow between fondos 

indicates that nesting females may nest interchangeably between fondos. Number of 

alleles per locus (Na) ranged from 4 to 16 for the thirteen markers (Table 3.3). FIS 

population specific indices obtained from Arlequin were significant for both populations 

when all individuals were included (adults and hatchlings), and when only adults were 

considered (Table 3.4). For both populations a significant excess of homozygotes was 

evidenced. The degree of homozygosity for Pedernales decreases greatly when hatchlings 

were included. Pedernales hatchling data were divided into each of the fondos. FIS indices 

per fondo suggested also an excess of homozygotes for hatchlings from both fondos, but 

was only significant for Fondo de la Tierra (Table 3.4). 

Table 3.2 Output from Genepop on the web v4.2 – Option 4 Nm estimates (private 
allele method).  

PED vs. CAB: Adults  MAL vs. TIE: Hatchlings 
Mean frequency of Pa = 0.09  Mean frequency of Pa = 0.01 

    
Nm =  0.99 Nm = 8.38 

Pedernales (PED), Cabritos Island (CAB), Malagueta (MAL) and Tierra (TIE). Private 
alleles (Pa).     
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Table 3.3 Genetic variation by locus in sampled adults and hatchlings from Cabritos 
Island and Pedernales populations 

    
Cabritos Island Adults Pedernales Adults 

Locus Na HE HO P S.D. FIS HE HO P S.D. FIS 

Ccste05 10 0.795 0.526 0.002 0.000 0.344 0.807 0.632 0.102 0.000 0.222 
CIDK144 4 0.440 0.400 0.614 0.001 0.093 0.579 0.316 0.023 0.000 0.461 
CIDK184 6 0.782 0.750 0.904 0.000 0.042 0.772 0.579 0.115 0.000 0.256 
Z106 6 0.737 0.550 0.041 0.000 0.259 0.756 0.750 0.080 0.000 0.009 
Z148 6 0.565 0.579 0.005 0.000 -0.026 0.737 0.650 0.092 0.000 0.121 
Z154 9 0.677 0.350 0.000 0.000 0.489 0.603 0.412 0.003 0.000 0.323 
Z494 7 0.682 0.524 0.025 0.000 0.236 0.659 0.550 0.270 0.000 0.169 
D1 6 0.512 0.500 0.076 0.000 0.023 0.779 0.600 0.056 0.000 0.235 
D11 14 0.765 0.789 0.009 0.000 -0.033 0.865 0.947 0.259 0.000 -0.098 
D101 8 0.449 0.450 0.378 0.001 -0.003 0.687 0.556 0.037 0.000 0.196 
D110 10 0.586 0.526 0.905 0.000 0.105 0.587 0.526 0.501 0.001 0.107 
D111 12 0.822 0.526 0.000 0.000 0.366 0.541 0.278 0.001 0.000 0.494 
D140 16 0.798 0.842 0.567 0.000 -0.057 0.819 0.737 0.253 0.000 0.103 
Mean  0.662 0.563   0.141 0.707 0.579   0.200 

   
Fondo de la Tierra Hatchlings Fondo de la Malagueta Hatchlings 

Locus Na HE HO P S.D. FIS HE HO P S.D. FIS 
Ccste05 10 0.698 0.660 0.005 0.000 0.055 0.702 0.706 0.002 0.000 -0.006 
CIDK144 4 0.613 0.464 0.000 0.000 0.245 0.603 0.610 0.000 0.000 -0.011 
CIDK184 6 0.749 0.667 0.002 0.000 0.111 0.788 0.757 0.006 0.000 0.040 
Z106 6 0.726 0.725 0.000 0.000 0.001 0.682 0.630 0.000 0.000 0.077 
Z148 6 0.653 0.567 0.002 0.000 0.132 0.698 0.750 0.003 0.000 -0.075 
Z154 9 0.560 0.490 0.001 0.000 0.125 0.569 0.517 0.007 0.000 0.090 
Z494 7 0.563 0.544 0.016 0.000 0.034 0.594 0.610 0.006 0.000 -0.027 
D1 6 0.751 0.767 0.348 0.000 -0.021 0.744 0.767 0.045 0.000 -0.031 
D11 14 0.838 0.796 0.000 0.000 0.050 0.798 0.826 0.000 0.000 -0.035 
D101 8 0.708 0.647 0.000 0.000 0.086 0.728 0.718 0.000 0.000 0.013 
D110 10 0.482 0.362 0.012 0.000 0.250 0.570 0.407 0.000 0.000 0.286 
D111 12 0.657 0.451 0.000 0.000 0.315 0.257 0.150 0.000 0.000 0.417 
D140 16 0.800 0.830 0.014 0.000 -0.037 0.773 0.669 0.000 0.000 0.135 
Mean   0.677 0.613   0.103 0.654 0.624   0.067 

Locus name (Locus). Number of alleles (Na). Expected and observed heterozygosity (HE and HO, 
respectively), and their respective P value and Standard Deviation (S.D.) (Guo and Thompson, 1992). 
Coefficient of inbreeding (FIS) according to Weir and Cockerham (1984). In bold significant P values.   



 

24 

Table 3.4 Population specific FIS indices.     

   FIS  P (Rand FIS >= 
Obs FIS 

Adults: 
CAB 0.091 0.028 
PED 0.141 0.000 

Adults + Hatchlings: 
PED 0.056 0.000 

Hatchlings: 
MAL 0.019 0.151 

TIE 0.067 0.002 
Output from Arlequin v. 3.5.1.3. FIS indices with 1023 permutations. Pedernales (PED), 
Cabritos Island (CAB), Malagueta (MAL) and Tierra (TIE). In bold significant P values.    

3.4 Dispersal between and within geographic regions 

An Analysis of Molecular Variance between Cabritos (CAB) and Pedernales 

(PED) adults revealed that a significant portion of the differences in the genetic makeup 

of these two areas can be explained by relative isolation and lack of gene flow (FST = 

0.132, p << 0.01; Table 3.5). A significant, although less pronounced, degree of isolation 

was also found with an AMOVA apportioning genetic variance between Malagueta 

(MAL) and Tierra (TIE) fondos (FST = 0.020, p << 0.01; Table 3.5). When adults and 

hatchlings were combined in the third AMOVA design, the degree of differentiation 

between CAB and PED increased to 15.4% (FST = 0.154, p << 0.01; Table 3.5).  

Table 3.5 Pairwise FST estimates.  

 FST P ± S.E. 

CAB vs. PED (Adults) 0.132 0.000 ± 0.000 

MAL VS. TIE (Hatchlings) 0.020 0.000 ± 0.000 

CAB vs. PED (Adults + Hatchlings) 0.154 0.000 ± 0.000 
Pedernales (PED), Cabritos Island (CAB), Malagueta (MAL) and Tierra (TIE). 
Significant P values in bold. Standard Error (S.E.).   
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3.5 Spatial structure of nests 

3.5.1 Between fondos: coarse spatial scale   

 

Figure 3.1 Plots of K(r) vs. distance (r) and corresponding function L(r) – r plotted 
against distance (r) for Los Olivares.   

(A) Plot of K(r) vs. distance (r) for Los Olivares (MAL and TIE) using the envelope 
function. Kobs(r) represents the observed value of K(r) for the data, Ktheo(r) is the 
theoretical value of K(r) assuming a random distribution (CSR under a poisson model), 
Khi(r) and Klo(r) represent the upper and lower boundaries for the curve from 95 
simulations which closely overlap with Ktheo(r). Significance level of the Monte Carlo 
test: 2/96 = 0.0208. (B) Ripley’s K corresponding function L(r) – r plotted against 
distance (r). 

Ripley’s K was estimated at a coarse scale including data from both fondos in Los 

Olivares. A total of 1,166 spatial points (nests) from 2008-2013 occurred within a 1,100 x 

1,500 m rectangular plot. K(r) was estimated for distances up to 250 m. After this cut-off 

distance value, the spatial pattern of nests became a random process. Observed variation 

in node density for all K(r) estimates, as measured by Kobs(r), exceeded the expected 

variance that assumed a random distribution of points, Ktheo(r). This indicates that nests 

are significantly clustered when evaluated at a coarse scale (Figure 3.1), and within a 

radius of 250 m, the clustering pattern is clearly evident.  
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3.5.2 Within fondos: fine spatial scale  

Ripley’s K was estimated at a finer scale where each fondo was evaluated 

individually. For Malagueta fondo a total of 573 spatial points (nests) from 2008-2013 

that were within a 170 x 476 m rectangular plot were measured. K(r) was estimated for 

distances up to 40 m, the threshold distance at which nest density approaches that 

expected under the null model (Figure 3.2 A). Fondo de la Tierra included 593 spatial 

points in a 454 x 695 m rectangular plot. K(r) was estimated for distances of up to 100 m, 

the threshold for the null model (Figure 3.2 B). Observed variation in node density for all 

K(r) estimates, as measured by Kobs(r), exceeded the expected variance assuming a 

random distribution of points, Ktheo(r). This suggests a similar pattern as the one for Los 

Olivares, where nests are significantly clustered even when the scale under evaluation 

decreases (Figure 3.2). This indicates that for Malagueta fondo within a radius of 40 m, 

nests are significantly clustered and for Tierra the radius where significant clustering is 

present is 100 m. The corresponding function, L(r) – r, also suggests that the degree of 

clustering in relation to distance (r) varies between sites. Because of the pre-existing 

clustering pattern of the fondos at the Pedernales site and due to the significant degree of 

clustering observed for each fondo individually, both fondos are analyzed separately from 

this point forward. 
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Figure 3.2 Plots of K(r) vs. distance (r) and corresponding function L(r) – r plotted 
against distance (r) for Malagueta and Tierra.   

(A and C) Plots of K(r) vs. distance (r) for (A) Malagueta and (C) Tierra using the 
envelope function. Kobs(r) represents the observed value of K(r) for the data, Ktheo(r) is 
the theoretical value of K(r) assuming a random distribution (CSR with a Poisson model), 
Khi(r) and Klo(r) represent the upper and lower boundaries for the curve from 95 
simulations which closely overlap with Ktheo(r). Significance level of the Monte Carlo 
test for Malagueta and Tierra were: 2/96 = 0.0208. (B and D) Ripley’s K corresponding 
function L(r) – r plotted against distance (r) for (B) Malagueta and (D) Tierra.  

3.5.3 Spatial structure of nests by year 

Spatial points for each fondo for every year from 2008-2013 were plotted to 

evaluate the pattern of clustering suggested by Ripley’s K at a finer scale and to evaluate 

if the clustering pattern observed changes over time. Dotted lines on Figures 3.3 and 3.4 

indicate distances that were underrepresented, or where plateaus occur, and 

supplementary information for these plateaus are provided in Appendix C. Results 

suggests that the scale of aggregation varies across years as well as the distances between 

aggregations. The ranges of distances at which clustering patterns were detected for 
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Tierra ranged from 50-70 m and for Malagueta these values ranged from 45-70 m 

(Appendix C). If circles with radii of 50-70 m at Tierra or 45-70 at Malagueta are 

considered, clustering of nests is observed over the years. For 2013 no pattern of spatial 

aggregation was found. All nests were considered to be part of one cluster when the edge 

thinning technique was used. This suggests that nests were more dispersed across fondos 

for 2013. Other cases of this sort of pattern include Tierra in 2009 (Figure 3.3) and 

Malagueta in 2008 (Figure 3.9).  
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Figure 3.3 Edge thinning technique applied for Fondo de la Tierra by year.  

Plotted in increments of 5 m (step command = 5 in R). Plots represent data from the L(r) 
– r function for K(r). Distance (r) is in meters. Dotted lines represent the minimal 
distance at which plateaus are formed. Each graph represents a different year.      
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Figure 3.4 Edge thinning technique applied for Fondo de la Malagueta by year.  

Plotted in increments of 5 m (step command = 5 in R). Plots represent data from the L(r) 
– r function for K(r). Distance (r) is in meters. Dotted lines represent the minimal 
distance at which plateaus are formed. Each graph represents a different year.      
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3.6 Spatial genetic structure of nests 

 

Figure 3.5 Fondo de la Tierra clustering pattern from edge thinning technique.   

TD1 implements a distance radius of 60 m and TD2 of 40 m to detect clusters. Each 
cluster is sequentially numbered. Circles represent un-sampled nests from 2013 in Fondo 
de la Tierra and colored triangles are sampled nests. Triangles that belong to a same 
cluster are represented with the same color. 

Distances below the minimal plateau distance for the data points from 2013 that 

were obtained from the edge thinning technique were combined with molecular data. 

Even if plateaus were not clearly defined in the results of the 2013 edge thinning 

procedures and only one pattern of aggregation was observed, multiple distances were 

tested. The females within each putative cluster labeled on Figures 3.5 and 3.6 should be 

more closely related when compared to females from other clusters. The distances used to 

subdivide each fondo into clusters were based on the result of the edge thinning analysis. 
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Figure 3.5 presents two different threshold distances (TD) used for Tierra and the 

clustering pattern at those distances. Figure 3.6 shows the TD used for Malagueta fondo. 

 

Figure 3.6 Fondo de la Malagueta clustering pattern from edge thinning technique.   

TD3 implements a radius of 30 meters to detect clusters. Each cluster is sequentially 
numbered and represented with a different color. Circles represent un-sampled nests from 
2013 in Fondo de la Malagueta and colored triangles are sampled nests. Triangles that 
belong to a same cluster are represented with the same color.      

F-statistics for each of the clustering patterns tested are shown in Table 3.6. 

Genetic structuring for the hierarchical levels (i) among clusters within fondo (FCT) and 

(iii) among individuals within nests (FIS) was not significant. This indicates that the 

spatial genetic structuring suggested in Figures 3.5 and 3.6 was not supported when the 

genetic structuring involved clusters and individuals within nests. Smaller distances were 

tested and no significant differences in the AMOVA were detected. To further decrease 

the radii of distances used, a higher amount of nests should be included in this type of 

analysis. The most significant level of differentiation was (ii) among nests within clusters 

(FSC). This result indicates that 20% of the variation in Tierra and 17.5% of the variation 

in Malagueta can be explained among the nests within clusters. This suggests that nests 
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within a single cluster are not more closely related than nests from other clusters. The 

hierarchical level related to the degree of differentiation (iv) within individuals (FIT) was 

moderately significant for Tierra, and for Malagueta it was not significant. This suggests 

that there is a significant deviation of alleles from Hardy-Weinberg expectations within 

individuals relative to the entire fondo (Holsinger and Weir, 2009), which is consistent 

with the population specific FIS indices estimated for fondo de la Tierra (Table 3.4).  

Table 3.6 F-statistics to evaluate the clustering patterns depicted in Figures 9 and 10.  

Hierarchical 
level (i – iv) 

Fondo de la Tierra Fondo de Malagueta 

TD1: 60 m TD2: 40 m TD3: 30 m 
FCT =                     

P ± S.E. =  
-0.015 
0.887 ± 0.009 

-0.003 
0.531 ± 0.005 

0.001 
0.552 ± 0.012 

              
FSC =                   

P ± S.E. = 
0.204 
0.000 ± 0.000 

0.200 
0.000 ± 0.000 

0.175 
0.000 ± 0.000 

 
FIS  =                    

P ± S.E. = 
-0.158 
1.000 ± 0.000 

-0.158 
1.000 ± 0.000 

-0.173 
1.000 ± 0.000 

              
FIT =                     

P ± S.E. = 
0.064 
0.003 ± 0.002 

0.070 
0.003 ± 0.001 

0.033 
0.129 ± 0.010 
 

Hierarchic levels on table: (i) among clusters (FCT), (ii) among nests within clusters 
(FSC), (iii) among individuals within nests (FIS), and (iv) within individuals (FIT). 
Significant P values in bold. 

3.7 Testing the isolation-by-distance model 

To evaluate natal philopatry for both Tierra and Malagueta fondos, a Mantel’s test 

was performed using 13 microsatellite markers for 22 nests from Tierra (109 samples in 

total) and 23 nests from Malagueta (148 samples in total). There was a positive R2 value 

for all Mantel’s tests performed, and the R2 values shown in Table 3.7 for all correlations 

are very small. These results suggest that only 0.02% and 0.80% of the variation in Tierra 



 

34 

and Malagueta, respectively, can be explained by the isolation-by-distance model 

(Wright, 1943). This was only significant for Malagueta. When both fondos were 

evaluated together, a significant positive correlation was still present but very little of the 

variation can be explained with this model (only 0.7%). In this respect, the alternative 

hypothesis of a positive association between matrices was supported. However, very little 

of the genetic variation could be explained by the model, which is consistent with some 

degree of fine scale philopatry.    

Table 3.7 Paired Mantel Tests for hatchlings from Malagueta and Tierra. 

Genetic 
distance Sample Linear fit R R2 P 

vs. Geographic 
distance  

All individuals 
from 45 nests 
(Tierra+Malagueta) 

y=0.0007x+19.52 0.083 0.0069 0.010 

vs. Geographic 
distance  

All individuals 
from 22 nests 
(Tierra) 

y=0.0006x+20.502 0.015 0.0002 0.410 

vs. Geographic 
distance  

All individuals 
from 23 nests 
(Malagueta) 

y=0.0042x+18.483 0.089 0.0078 0.020 

Tests performed between a pairwise geographic distance matrix (GGD) and a pairwise 
genetic distance matrix (GD) for hatchlings emerging from nests in Tierra and Malagueta 
Fondos, combined and separately. Significant P values in bold. 
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CHAPTER IV 

DISCUSSION 

In this study I investigated overall genetic structure for the species based on 

individuals sampled from two locations, Pedernales and Cabritos Island. I found 

significant differences between these populations suggesting restricted gene flow 

between sites. I also analyzed the nesting behavior of C. ricordii with neutral molecular 

markers to test the hypothesis of natal philopatry. I focused on two fondos, or nesting 

areas, in Pedernales province: Fondo de la Tierra and Fondo de la Malagueta. I found 

support for high levels of spatial clustering of nest sites within fondos consistent with a 

high return rate of females to nest in specific areas within these communal sites. The 

hypothesis of ‘natal philopatry’, however, was not supported because females nesting in 

the same cluster were no more closely related to each other than other females in these 

fondos. Further, the relationship between geographic distance and genetic distance among 

hatchlings within fondos was not strong enough to have a marked effect on fine scale 

genetic structure.  

4.1 Population genetic structure 

Descriptive statistics for adults collected from Pedernales and Cabritos Island 

showed a significant excess of homozygotes in both populations. When the FIS indices 

were generated for both hatchlings and adults in Pedernales, they were lower indicating 
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that homozygote excess is lower in hatchlings than adults. However, the excess 

homozygosity in adults may reflect sampling (i.e. small sample size, Pedernales = 20 and 

Cabritos = 21). Hatchlings were collected from discrete nesting sites (fondos), and the 

assumption that these animals belong to the same population seems appropriate. 

Collection of adults was more haphazard. Many of the adults sampled were deceased as a 

result of predation by feral dogs. Because the precise origins of adults sampled are 

unknown there is a distinct probability that these belong to a broader geographic range, 

and do not meet the assumption that they belong to a single panmictic population. Hence, 

the apparent elevated observed homozygosity in adults may reflect genetic differences 

among populations at a broader geographic scale than was assessed for hatchlings. 

The significant degree of differentiation observed between allele frequencies in 

Pedernales and Cabritos Island populations (FST = 0.132, p<<0.01) is suggestive of nearly 

complete genetic isolation between these populations. Estimating number of migrants 

between these populations based on private alleles also supports limited gene flow 

between geographic regions (Nm = 0.99). According to Slatkin (1987), Nm < 1 cannot 

counteract the effects of genetic drift, and is suggestive of nearly complete isolation 

between these populations. The pattern of genetic structure was not entirely surprising 

because of the magnitude of the geographic barriers between sites. Sierra de Bahoruco (a 

mountain system on Hispaniola), which reaches almost 2,000 m asl and Enriquillo Lake 

are important barriers for dispersal between Pedernales and Cabritos Island populations. 

Many studies have demonstrated how these types of barriers influence genetic divergence 

of other species of Cyclura (Colosimo et al., 2014) and other species from Hispaniola 

(Gifford et al., 2004; Sly et al., 2010; Brace et al., 2012). Colosimo et al. (2014) found 
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that as much as 27% of the total genetic variance in the Andros Island Rock Iguana 

(Cyclura cychlura cychlura) was explained by differences among populations. These 

authors concluded that iguanas may only rarely disperse over wider water channels that 

separate the major landmasses that compose Andros Island, or that dispersal rarely results 

in successful migration over these water channels. Gifford et al. (2004) conducted an 

extensive evaluation of a small reptile, Ameiva chrysolaema, and found the isolating 

effects of the Cordillera Central and Sierra de Bahoruco mountains. Gifford et al. (2004) 

found a 14% mitochondrial sequence divergence between the northern and southern 

populations. Similar results were also found for a small rodent, Plagiodontia aedium, 

which also exhibits sequence divergence of almost 3% between populations separated by 

these geographic barriers (Brace et al., 2012). Sly et al. (2010) found mitochondrial 

sequence divergence of 5% between the northern and southern populations of Palm-

Tanagers (Phaenicophilus) sampled from multiple mountain systems of Hispaniola. 

Overall, these studies provide clear evidence that the landscape of Hispaniola can limit 

the dispersal for many terrestrial vertebrates. 

4.2 Natal philopatry 

Genotypic data for hatchlings collected from Tierra and Malagueta revealed an 

excess of homozygotes for both fondos, though it was only significant for Tierra. The 

homozygosity observed in hatchlings from Pedernales, along with elevated levels of 

homozygosity for adults suggests that positive assortative mating may occur in the 

Pedernales population, and that limited dispersal is present between fondos within 

Pedernales. This may indicate that the breeding population from Pedernales is small. 

Natal philopatry in a small breeding population may reinforce patterns of inbreeding 
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among the adult population. Within fondos, fine-scale genetic structuring observed for 

iguanas indicates that random mating is not present (FST = 0.020, p<<0.01). This also 

suggests that some behavior related to the females’ ability to choose a site to nest that 

increases her fitness ought to be expected. Given the threats that the Pedernales 

population faces, it is possible that the absence of an excess of heterozygotes in the 

hatchling data set may be an artifact caused by a small population size where nesting 

female relatedness will be high, and because of low recruitment among hatchlings. 

Fine scale genetic structuring, within distances of 0.1 to 2 km, has been detected 

in a number of mobile animal species such as rattlesnakes (Gibbs et al., 1997; Clark et 

al., 2008), carabid beetles (Brouat et al., 2003), ungulates (Coltman et al., 2003) and bush 

rats (Peakall et al., 2003). Moore et al. (2008) studied a long-lived reptile (tuatara, 

Sphenodon punctatus) and found an overall genetic differentiation of 1.2% among 

subpopulations that where only 400 m apart (RST = 0.012, p=0.025). When the authors 

expanded their analysis to include a wider spatial range (750 m) the pattern disappeared 

(Moore et al., 2008). Moore et al. (2008) found that tuatara lack a philopatric behavior 

and concluded that long-lived animals may present high genetic variation at a small scale 

without the presence of a complex social system. Female philopatry can enforce fine 

scale genetic structuring, and it has been observed in several marine and terrestrial 

animals (Hueter et al., 2005; Nussey et al., 2005; Frantz et al., 2008; Browne et al., 

2010). With Ricord’s iguana in Pedernales, very little is known about the species social 

system. Given the sedentary nature of these lizards, the highly fragmented habitat in 

Pedernales and the constant threats that the species faces (Rupp, 2010), fine scale genetic 

structure may be a product of all these factors. Similar results were found by Moore et al. 
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(2008) for tuatara. The social system at the Pedernales nesting habitat may present 

complex intra- and interspecies interactions between males that are known to present 

home range philopatry during the mating season, and females that tend to be philopatric 

towards a communal nesting area (Pérez-Buitrago et al. 2010). Sex-biased dispersal is a 

common pattern for many lizards (Gardner et al., 2001; Stow et al., 2001; Valenzuela and 

Janzen, 2001), and to study these sex specific traits other types of molecular markers 

need to be evaluated. The use of nuclear molecular markers may not provide the 

necessary resolution to fully discriminate sex specific differences. However, R2 values for 

the Mantel’s test were positive. This highlights the importance of using appropriate 

markers that reflect dispersal patterns for both sexes if the complex nature of nesting in 

this genus is to be better understood. Because of the lack of variation observed for the 

mitochondrial markers tested (Arévalo et al., 1994), additional mitochondrial markers 

will have to be developed for this species before mtDNA sequence variation can be used 

as an effective tool for studying female biased dispersal patterns. 

When spatial statistics were leveraged to test for natal philopatric behavior, a 

significant level of spatial clustering of nest sites at coarse and at fine spatial scales was 

supported through the years (2008-2013). This degree of clustering between fondos, 

coarse spatial scale, was expected due to the pre-existing clustering nature of these 

communal nesting areas (fondos) in Pedernales. However, when combined, spatial and 

genetic data do not support the return of related females to a specific nest aggregation. 

Although, a strong fidelity towards specific areas, from females of unknown origin, 

within these fondos was supported with spatial data. Ripley’s K and results from edge 

thinning techniques supports an alternative hypothesis. The "by-product" hypothesis 
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states that communal nesting results from a scarcity of appropriate nesting sites or other 

factors that cause coincidental aggregations of nesting mothers (Vitt, 1993; Doody et al., 

2009). The pattern detected using spatial statistic tools could hence be explained by the 

overall shortage of nest sites in Pedernales province. However, an “adaptive” hypothesis 

may be soon considered, which states that fitness benefits to mothers, eggs, and 

hatchlings drives communal nesting (Doody et al., 2009). Where a suitable habitat for 

reproduction might be scarce and restricted to small areas, natural selection has favored 

individuals that return to the same natal areas to reproduce. Many reproductive 

advantages have been attributed to philopatric behaviors (Robinson & Bider, 1988; 

Eckrich & Owens, 1995; Giraldeau, 1997; Galef & Giraldeau, 2001; Giraldeau et al., 

2002; Doody et al., 2009).  

A significant proportion of the genetic variation detected within fondos 

distinguishes among nests within clusters (FSC = 0.204, p<<0.01 for Tierra and FSC = 

0.175, p<<0.01 for Malagueta). This suggests that the patterns of aggregation observed 

with Ripley’s K estimate are independent of the genetic structuring observed within each 

fondo. These results are inconsistent with natal philopatry limiting dispersal for nest site 

selection within these fondos. Nests within each of the putative clusters are not more 

related to each other than the ones from other clusters. If natal philopatry were present, 

nests grouped within a single cluster should be more related to each other than nests from 

other clusters and variation among clusters should be significant. Nevertheless, unrelated 

females may have selected the same nest site, and elucidating these differences in 

relatedness may benefit from the gathering of ecological and behavioral data at the 

individual level for the Pedernales population. 
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Besides all of the points discussed previously, imprinting is a concept that has 

been discussed for salmon and sea turtles (Lohmann et al., 2008). Hatchlings may imprint 

on environmental parameters such as the type of soil and vegetation when they hatch. 

The southern nesting areas for C. ricordii are characterized by low-lying geological 

formations covered by fine, red argillic soil (Arias et al., 2004) and a rather uniform 

vegetation type where Acacia is predominant along with cacti. Given that significant 

gene flow between fondos was evident (Nm = 8.38), this indicates that natal philopatric 

behavior, if present, may not be strong or exclusive to finer spatial scales. Or this 

evidence could be overcome by a more general “homing” behavior driven by other 

ecological factors like imprinting on habitat features. The significant 2% of genetic 

differentiation between fondos within Pedernales shows how even with a long-lived 

reptile, very fine scale (< 1km) genetic structuring can be present and limited dispersal 

may be an outcome of natal philopatry for the Pedernales population. Changes in patterns 

of aggregations by year indicated that the observed patterns are not constant through 

space and time. Multiple factors may influence these yearly changes in the patterns of 

nest sites aggregations. First, is the possibility that females are not nesting every year 

(Iverson et al., 2004) and second, many environmental factors may be stimulating 

females to choose a different location every year. Tropical storms have a negative 

influence on hatching success (Iverson et al., 2004), and anthropomorphic disturbances 

influence females when they are choosing locations to build nests and lay their eggs. 

These factors may bias female decision making, and nests may appear more spatially 

scattered. This might have been the case for the 2013 edge-thinning results, where nests 

were more dispersed across both fondos than in previous years (Figure 3.3 and 3.4).  



 

42 

4.3 Conservation  

The lack of philopatric behavior may have important consequences for future 

management decisions for C. ricordii. Multiple factors, such as quality of the nesting 

habitat, vegetation and lack of good nesting patches, might influence the recurrent visit to 

a specific site within the nesting areas by the same female (Bock et al. 1985; Knapp and 

Owens, 2008). Philopatric behavior may not be discounted given that a very slight but 

positive trend following an isolation-by-distance model was observed with the Mantel’s 

test. Further exploration of the species’ social system may be needed and highly variable 

sex-specific markers should be developed to better test for natal philopatry at these sites. 

More conservation actions ought to be considered to improve the genetic health of these 

populations. Extensions of the nesting habitats and translocation techniques have been 

discussed, and even if they are not the immediate plans for the conservation of the 

species, we may need to revisit them in the future. Both of these techniques are not likely 

to be successful if animals reject their new homes. This would likely happen if this 

species reveals evidence of natal philopatry. 

Understanding nesting dynamics may be helpful to detect the most important 

nesting requirements for this critical endangered species. Several conservation actions 

have been taken in hopes of preventing further population declines for the species since 

2002 and discussions regarding possible solutions in the future have started. Grupo 

Jaragua NGO implemented the monitoring program for the species nesting’s areas in 

Pedernales Province, and continues to actively work on habitat restoration and protection 

in Pedernales and the South of the Lake populations. These actions have ensured the 

maintenance of these populations for the past 10 years. 
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The success and maintenance of these actions depends heavily on how much 

information we can gather about the nesting behavior of the species. Ecological 

parameters and intra- and interspecies interactions are extremely important if we want to 

translocate a population to a new environment or simply restore historic nesting grounds. 

Individuals confiscated from the illegal pet trade and from hunters may benefit from an 

understanding of the genetic structure of their populations. Hence, better informed 

management decisions for the re-introduction of these individuals to their populations of 

origin ought to be accomplished, avoiding outbreeding among populations. Given the 

high degree of differentiation observed between Cabritos Island and Pedernales 

populations, and the lack of gene flow between them, it may be prudent to maintain both 

of these populations as independent units for conservation purposes. 
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APPENDIX A 

R SCRIPT USED FOR THE RIPLEY’S K ESTIMATION AND THE EDGE 

THINNING TECHNIQUE MODIFIED FROM BROOKS (2006) 
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A.1 Ripley’s K  

> mydata1<-read.csv("datasheet.csv") 

> head(mydata1) 

> mypattern1<-

ppp(mydata1[,2],mydata1[,3],c(215689,216390),c(1994551,1994

996)) 

> duplicated(mypattern1) 

> mypattern2<-unique.ppp(mypattern1) 

> plot(unique(mypattern2)) 

> plot(mypattern2) 

> summary(mypattern2) 

> plot(Kest(mypattern2)) 

> summary(Kest(mypattern2)) 

> plot(envelope(mypattern2,Kest,nsim=95)) 

> summary(envelope(mypattern2,Kest,nsim=95)) 

> plot(density(mypattern2)) 

> summary(density(mypattern2))  

> fondo1<-Kest(mypattern2)  

> str(fondo1) 

> sqrt(fondo1$theo/pi) 

> fondo1 

> plot(sqrt(fondo1$theo/pi)- fondo1$r~ fondo1$r,type='l') 

> plot(sqrt(fondo1$iso/pi)- fondo1$r~ fondo1$r,type='l') 

> plot(sqrt(fondo1$border/pi)- fondo1$r~ fondo1$r,type='l') 

> plot(sqrt(fondo1$trans/pi)- fondo1$r~ fondo1$r,type='l') 

> plot(sqrt(fondo1$iso/pi)-fondo1$r~fondo1$r,type='l',  

     lwd='3', xlim=c(0,110), xlab='Distance (r)', ylim=c(-   

     10,50), ylab='Fondo1 :  L(r) - r')) 

> text(40, 31, "Clustered", col='black', lwd='12') 

> abline(h=0, col='black', lwd='1')  

> text(80, 3.5,"CSR", col="black") 

A.2 Edge Thinning Technique  

> dataXY = read.csv('datasheet.csv',header=TRUE) 

> head(dataXY) 

> distances = as.matrix(dist(dataXY)) 

> edge.thin <- function(distances, min = 0, max, step) { 
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   et.clusters = list() 

 

   for (i in 1:((1+(max-min)/step))) { 

 

      d = min+(i-1)*step 

     

      M = ifelse(distances < td & distances != 0, 1, 0) 

      G = graph.adjacency(M) 

      C = clusters(G) 

      if(i==1) et.clusters = list(td,C) 

      else et.clusters[[i]] = list(td,C) 

   } 

   et.clusters 

   } 

> plot.edge.thin = function(x) { 

   td = numeric(length(x)) 

   sz = numeric(length(x)) 

   for (i in 2:length(x)) { 

      td[i] = x[[i]][[1]] 

      sz[i] = sum(x[[i]][[2]]$csize)/x[[i]][[2]]$no 

  } 

   plot(td, sz, type = 'l', lwd = 3, xlim = c(0,150), 

xlab    

     = 'Distance (r)', ylim = c(0,150), ylab =   

     'Mean No. Nests/Cluster, Fondo 2013') 

} 

> Q = edge.thin(distances,max=max(distances),step=100) 

> str(Q) 

> plot.edge.thin(Q) 

> Q2 = edge.thin(distances,max=100,step=5) 

> plot.edge.thin(Q2) 

> str(Q2) 
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APPENDIX B 

SAMPLING SUCCESS DURING 2012 AND 2013 FIELD SEASONS FOR CYCLURA 

RICORDII POPULATIONS 
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Table B.1 Sampling success for hatchlings and adults.  

   Malagueta 

Hatchlings 

Tierra 

Hatchlings 

Pedernales 

Adults 

Cabritos 

Adults 

No. 
NestID 

(2013) 
Qt. 

NestID 

(2013) 
Qt. Year Qt. Year Qt. 

1 N02 1 E01 8   2010 5 

2 N03 1 E02 10 2012 5 2012 13 

3 N08 12 E05 1 2013 21 2013 9 

4 N09 11 E06 9     

5 N10 12 E08 3     

6 N11 1 E12 1     

7 N12 15 E13 2     

8 N13 5 E14 15     

9 N15 13 E16 12     

10 N17 1 E18 3     

11 N19 10 E19 1     

12 N20 6 E23 4     

13 N21 4 E26 3     

14 N26 1 E34 4     

15 N27 1 E37 1     

16 N28 1 E40 6     

17 N32 5 E45 8     

18 N36 10 E56 1     

19 N3613 7 E58 1     

20 N43 1 E70 8     

21 N49 2 E73 1     

22 N56 13 E77 3     

23 N77 15         

  148  105  26  27 
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APPENDIX C 

EDGE THINNING TECHNIQUE RESULTS FOR L(r) – r FUNCTION FROM 

RIPLEY’S K BY YEAR (2008-2013) FOR EACH FONDO (TIERRA AND 

MALAGUETA) 
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Table C.1 Summary spatial pattern data from edge thinning analysis for Fondo de la 
Tierra and Malagueta across years 2008-2013.  

Tierra Fondo Malagueta Fondo 

Year Plateau 

ID. 

Mean No. 

Nests/Cluster 

No. 

Clusters 

Distance  Plateau 

ID. 

Mean No. 

Nests/Cluster 

No. 

Clusters 

Distance 

2008 08-I 25 4 50 08-I 91 1 50 

  08-II 50 2 65         

  08-III 100 1 75         

2009 09-I 65 1 65 09-I 36 3 50 

          09-II 54 2 70 

          09-III 108 1 80 

2010 10-I 46.5 2 70 10-I 26 3 60 

  10-II 93 1 80 10-II 78 1 95 

2011 11-I 61.5 2 65 11-I 76.5 2 45 

  11-II 123 1 75 11-II 153 1 80 

2012 12-I 63.5 2 55 12-I 76.5 2 45 

  12-II 127 1 75 12-II 76.5 2 55 

2013 13-I 96 1 75 13-I 110 1 40 
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