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A B S T R A C T   

Understanding the distribution of urban tree canopy cover and its relationship with socioeconomic character
istics is critical for informing urban planning and ecological research. However, most knowledge on this topic 
comes from studies in high-income countries (e.g., North America), and thus, little is known for other cultural, 
ecological, and political contexts. Here, we derived a high-spatial resolution (1.2 m) land-use/land-cover map for 
the tropical city of Santo Domingo, Dominican Republic, and examined how socioeconomic characteristics (i.e., 
population density, socioeconomic status, detached homes, homeownership, and householder’s age) relate to 
residential tree canopy cover at the neighborhood scale. We found that previous theory developed in North 
American cities applied only partially to Santo Domingo. Of the five socioeconomic variables examined, only two 
showed relationships with tree canopy consistent with previous findings from North American cities. In 
particular, socioeconomic status, one of the better-studied correlates of urban tree canopy, was not positively 
associated with tree canopy cover. At the same time, our new land-use/land-cover map revealed the presence of 
important areas with low levels of tree canopy cover, which may require additional attention by city planners. 
Our study reinforces the value of high-spatial resolution satellite data for examining urban areas, and highlights 
the need for further understanding the characteristics related to the distribution of tree canopy cover outside 
North America.   

1. Introduction 

Understanding the distribution of urban tree canopy cover and its 
relationship with neighborhood socioeconomic characteristics is key to 
informed decision-making, urban planning, and environmental justice 
(Schwarz et al., 2015; Gerrish and Watkins, 2018; Watkins and Gerrish, 
2018; Grove et al., 2018). Urban tree canopy provides important 
ecological, social, and psychological benefits (Livesley et al., 2016; 
Endreny, 2018). However, knowledge of tree canopy cover and its 
relationship with socioeconomic factors comes mostly from studies of 

cities in high-income countries and the temperate zone, particularly 
from North America (e.g., Troy et al., 2007; Pham et al., 2012a, b, Giner 
et al., 2013; Shakeel and Conway, 2013; Grove et al., 2014; Locke et al., 
2017; Kolosna and Spurlock, 2018; Nesbitt et al., 2019). Advancing 
urban planning and environmental research requires testing whether 
previous theory developed mostly in North America applies to other 
regions of the world (McHale et al., 2013). 

Previous studies predominantly from North America suggest that 
population density, income (a proxy for socioeconomic status), presence 
of detached homes, homeownership, and lifestage are important factors 
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related to the distribution of tree canopy cover on residential lands in 
urban areas (e.g., Troy et al., 2007; Bigsby et al., 2014; Grove et al., 
2014; Locke et al., 2016). Specifically, population density has been 
found to be negatively associated with residential tree canopy cover 
(Troy et al., 2007; Grove et al., 2014; Locke et al., 2016). The negative 
association between population density and tree canopy cover could be 
explained by the fact that people and buildings displace trees and green 
spaces in general (Troy et al., 2007; Grove et al., 2014; Locke et al., 
2016). Moreover, detached houses typically have more available space 
for trees and green vegetation than areas with attached houses, which 
could explain the positive association with tree canopy cover (Troy 
et al., 2007; Grove et al., 2014). Income, one of the best-studied corre
lates of tree canopy cover in cities, has typically been found to be 
positively associated with residential tree canopy cover (Troy et al., 
2007; Grove et al., 2014; Schwarz et al., 2015; Locke et al., 2016; see 
meta-analysis by Gerrish and Watkins, 2018). The positive association 
could be explained by the fact that residents of more affluent neigh
borhoods or with higher socioeconomic status may choose to plant and 
care for more trees, and/or to move to greener neighborhoods. Nesbitt 
and colleagues found a strong positive correlation between urban woody 
vegetation and income in eight out of ten US cities analyzed (Nesbitt 
et al., 2019). In the United States, historic socioeconomic conditions are 
also predictive of contemporary tree canopy cover. Specifically, a 
race-based housing policy called Redlining in the 1930′s categorized 
neighborhoods by racial composition and housing stock. Studies of more 
than 100 metropolitan regions show that areas formerly inhabited by 
racial minorities and immigrants have less vegetation overall today than 
neighborhoods formerly consisting of US-born, white residents (Hoff
man et al., 2020; Namin et al., 2020). A study using high-resolution, 
high-accuracy tree canopy maps for 37 US cities found that predomi
nantly US-born white neighborhoods have on average 43 % tree canopy 
today, whereas the areas where racial and ethnic minorities have on 
average 23 % tree canopy cover (Locke et al., 2021). In summary, both 
historic and present-day socioeconomic characteristics relate to urban 
tree canopy. 

At the same time, home ownership in the US is often associated with 
higher tree canopy cover (e.g., Heynen et al., 2006; Szantoi et al., 2012; 
Grove et al., 2014; Mills et al., 2016). A potential explanation is that 
owners have decision making control over their properties and may 
choose to plant trees, while renters may not have permission, or eco
nomic resources to modify the landscape via tree plantings (Landry and 
Chakraborty, 2009). Yet, in some cases null and insignificant (Troy 
et al., 2007) or even negative associations (Miller and Bourne 2013, 
Locke et al., 2016) between home ownership and tree canopy cover have 
been observed, with little rationale provided. These findings highlight 
the need for further understanding the role of home ownership. 

Further, members of different demographic groups reflecting life
stage and lifestyle characteristic, such as young couples, retirees, recent 
parents, or grandparents have been found to have different amounts of 
tree canopy cover, even when they have similar socioeconomic status 
(Troy et al., 2007; Grove et al., 2014). This phenomenon can be 
explained by the fact that different demographic groups are expected to 
have different motivations, capacities and interests in yard care, 
including participation in residential tree planting programs (Locke and 
Grove, 2016). For example, greater tree canopy cover might be expected 
with older householders, because more established households may 
have had more time for trees to grow. 

Detailed information on urban vegetation from land-use/land cover 
maps is a key input for assessing social-ecological relationships in urban 
areas. The increasing availability of high-spatial resolution (≤ 5 m pixel) 
remotely-sensed data has opened new opportunities for mapping tree 
canopy cover and urban land-use/land-cover in cities around the globe 
(e.g., Moran, 2010; Pu and Landry, 2012; O’Neil-Dunne et al., 2014; 
Santos and Freire, 2015; Fundisi and Musakwa, 2017; Morgenroth and 
Östberg, 2017). In particular, the combination of high-spatial resolution 

imagery with object-based classification techniques has been shown to 
be a powerful approach for mapping and characterizing urban areas. 
Object-based classifications are more effective at handling the spectral 
complexity of high-spatial resolution data than traditional pixel-based 
classifications (Blaschke, 2010), resulting in land-use/land-cover maps 
with higher accuracy (Zhou et al., 2008; Myint et al., 2011; Pu et al., 
2011; Momeni et al., 2016). Contrary to pixel-based classification that 
classifies the image based on the pixel’s spectral information, 
object-based classification identifies clusters of pixels with similar 
spectral properties, size, shape, and texture (i.e., “objects”) and uses 
them for classification (Yu et al., 2006; Myint et al., 2011; O’Neil-Dunne 
et al., 2014). Moreover, high-spatial resolution maps of urban 
land-use/land-cover provide not only information on the distribution of 
urban tree canopy cover necessary to evaluate relationships between 
residential vegetation and socioeconomic characteristics, but also ele
ments of urban form including built surfaces and building density, which 
can be important to urban planning and ecological research efforts. 
Urban land-use/land-cover data is especially needed in countries that 
have historically had limited access to data (Luederitz et al., 2015; Ziter, 
2016). 

Latin America is one of the most urbanized regions of the world 
(United Nations, 2018). However, assessments of the relationships be
tween urban vegetation and socioeconomic characteristics are limited, 
particularly in the tropical region of Latin America (see review by Dobbs 
et al., 2019, but see Martinuzzi et al., 2018). Further understanding of 
patterns of urban vegetation and social-ecological relationships in 
tropical Latin American cities is key for advancing urban ecological 
research and urban planning there. 

Our main goal was to understand the extent to which prior theory 
developed in North American cities applies to a tropical Latin American 
city, using Santo Domingo, Dominican Republic, as a case. Our objec
tives were to: i) derive a high-spatial resolution land-use/land-cover 
map of the city of Santo Domingo, and ii) examine how socioeco
nomic characteristics relate to tree canopy cover on residential lands. 
We focused on five socioeconomic variables, including population 
density, socioeconomic status, presence of detached homes, homeown
ership, and householder’s age. We tested five hypotheses: 1: Population 
density will be negatively correlated with tree canopy cover on resi
dential land; 2: The percentage of houses that are detached structures 
will be positively correlated with tree canopy cover on residential lands; 
3: Socioeconomic status will be positively correlated with tree canopy 
cover on residential lands; 4: The percentage of owner-occupied housing 
will be positively correlated with tree canopy cover on residential lands; 
and 5: The average age of households heads will be positively correlated 
with tree canopy cover on residential lands. 

2. Methods 

2.1. Study area 

We conducted our study in National District of Santo Domingo 
(hereafter Santo Domingo), the capital of the Dominican Republic in the 
Caribbean island of Hispaniola, and the oldest colonial city in the 
Americas (Fig. 1a). Santo Domingo covers 91.6 km2 and supports a 
population of 965,040 people according to the 2010 Census (https://cen 
so2010.one.gob.do/). Santo Domingo is a low elevation, coastal city 
bordered by the Caribbean Sea to the south, the Ozama and Isabela 
Rivers to the east and north, and other territories of the metropolitan 
area to the west. The climate is tropical with average annual tempera
ture and precipitation of 26 ◦C and 1661 mm respectively, corre
sponding to the subtropical moist forest life zone according to the 
Holdridge’s life zones classification. Santo Domingo is the center of a 
broader Metropolitan area and is divided into seventy neighborhoods or 
“barrios” ranging from 0.3 km2 to 6.1 km2 in size (Fig. 1b). 
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2.2. Data 

First, we created a high-resolution land-use/land-cover map, then we 
summarized it within Census-delineated units to associate with socio
economic variables, then we used regression to test how socioeconomic 
characteristics relate to tree canopy cover on residential lands. 

2.2.1. Satellite imagery and auxiliary data 
We used two high-spatial resolution satellite images from the 

WorldView-3 sensor (DigitalGlobe Incorporated, Longmont CO USA) 
acquired on August 2015, and covering the eastern and western half of 
the study area, respectively. WorldView-3 data has a spatial resolution 
of 1.2 m and eight spectral bands (coastal, blue, green, yellow, red, red 
edge, near infrared 1, near infrared 2). WorldView imagery have proved 
useful for separating land-use/land-cover classes in urban areas (Novack 
et al., 2011; Kumar et al., 2012; Pu and Landry, 2012; Belgiu et al., 2014; 
Hamedianfar et al., 2014; Ziaei et al., 2014; Hamedianfar and Shafri, 
2015; Santos and Freire, 2015). Images were chosen to contain less than 
10 % cloud cover and high atmospheric visual quality. As part of the 
image preparation, we removed the effects of atmospheric scattering 
and gas absorptions using the atmospheric correction tool FLAASH (Fast 

Line-of-sight Atmospheric Analysis of Hypercubes) in ENVI version 5.3.1 
software (Harris Geospatial Solutions, Broomfield, CO, USA), and con
verted the digital numbers to surface reflectance. Then, we mosaicked 
the two images into a single scene, covering our entire study area. 

In addition, we used spatial layers with the distribution of residential 
areas from the Government of Santo Domingo, including a detailed 
parcel-level land-use map, and a thematic layer indicating the location 
of informal settlements, often colloquially called slums. The city-wide 
parcel-level map separates residential lands from industrial, commer
cial, transportation (i.e., streets, sidewalks), public lands, and other 
uses; however some informal settlements were not included. Thus, we 
created our own layer of residential vs. non-residential areas by 
combining the residential areas from parcel-level land-use map and the 
layer with the informal settlements. Other auxiliary data used in our 
study included a GIS layer of water features (rivers, streams), and 10 cm 
aerial photos from 2011, also provided by the local Government. 

2.2.2. Socioeconomic data 
We obtained socioeconomic data from the 2010 Census of the 

Dominican Republic (https://censo2010.one.gob.do/) at the level of 
individual person, house, and household. However, we aggregated the 

Fig. 1. Study area, including geographic location (a); neighborhoods or “barrios” (b); and socioeconomic characteristics (c-g).  
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data at the barrio scale (n = 70) because it was the smallest mappable 
Census unit (Fig. 1b), and examined how socioeconomic characteristics 
relate to tree canopy cover exclusively on residential lands, because we 
were interested in the places where people live, and to maintain con
sistency with previous studies (Troy et al., 2007; Grove et al., 2014; 
Locke et al., 2016, among others). As part of the data preparation, we 
summarized five socioeconomic variables for each barrio: (1) population 
density in residential lands; (2) proportion of detached houses; (3) 
average socioeconomic status; (4) proportion of owner-occupied homes; 
and (5) average age of household head (Table 1, Fig. 1c-g). We calcu
lated population density relative to the area of residential land per 
barrio. The proportion of detached houses, socioeconomic status, pro
portion of owner-occupied homes, and average age of household head 
were calculated from the Census. 

The Census of the Dominican Republic does not make available 
household income data, but rather a unique socioeconomic status 
composite score, referred here as socioeconomic status. This multi- 
faceted, socioeconomic status measure reflects the ability of each 
household to cover basic needs with ordinal values ranging from 1 (very 
low socioeconomic status) to 5 (medium-high socioeconomic status), 
and is based on house materials (roof, walls, etc.), available services 
(water, electricity, etc.), type of appliances in house, and level of edu
cation and health of the household members. We used the average value 
of socioeconomic status for each neighborhood, thus transforming the 
variable from ordinal to a continuous value between 1 and 5 (see Table 1 
for a description of variables). 

2.3. Analysis 

2.3.1. Land-use/land-cover classification 
We mapped seven land-use/land-cover classes through two main 

steps. First, we mapped three major land cover classes (tree, grass, and 
built-up surfaces) from the WorldView-3 imagery. Then, we combined 
the three land cover classes with our auxiliary GIS layers of residential/ 
non-residential land, and water, resulting in our final map. We explain 
these two steps in detail below. 

First, we mapped tree (including trees and shrubs), grass, and built- 
up land cover from the WorldView-3 imagery using object-based clas
sification implemented in eCognition 9.2 (Trimble Germany GmbH, 
Munich, Germany). We segmented the satellite imagery into objects 
using the multi-resolution and spectral-difference segmentations, and 
then developed rule sets for separating tree, grass, and built-up surfaces 
based on the spectral, context, and size characteristics of the image 
objects, assisted by visual interpretation of the 10-cm aerial photos. We 
used the Normalized Difference Vegetation Index (NDVI) to broadly 
separate the three land-cover classes based on NDVI values, and then 

developed rule sets for correcting misclassified objects in shaded vs. 
non-shaded areas. Shaded areas from buildings, trees, etc., can be 
challenging for classification in high-spatial resolution imagery (Zhou 
et al., 2009; Adeline et al., 2013). Consequently, we developed two rule 
sets for refining the classification, with one shaded and another for 
unshaded areas. We also visited Santo Domingo before the mapping 
started in order to have a better understanding of the landscape. The 
segmentation parameters and full rule-set are available in the supple
mentary information (Appendix A). 

Once we had classified tree, grass, and built-up surfaces, we sepa
rated them into residential and non-residential using our residential/ 
non-residential layer, resulting in six land-use/land-cover classes (i.e., 
tree: residential; tree: non-residential; grass: residential; grass: non- 
residential; built-up: residential; and built-up: non-residential). 
Finally, we added the seventh class, water, from our auxiliary GIS data. 
Areas with persistent cloud cover in the satellite imagery and equivalent 
to 0.5 % of the study area were classified as “no-data”. 

To assess the quality of our map we conducted an accuracy assess
ment of the tree, grass, and built-up land cover classes. We used a total of 
450 points, 150 random points in each class, and conducted a visual 
interpretation of those points in the 10-cm aerial photos, and when in 
doubt, we used the high-spatial resolution imagery from Google Earth 
from circa 2015. We reported overall accuracy, user and producer ac
curacies, and the kappa statistic. We did not conduct an accuracy 
assessment on all of the seven classes because the information on resi
dential and non-residential areas, as well as the water layer, are official 
data from the Government, and assumed to be truth. The 450 validation 
points were not used for training. 

2.3.2. Socioeconomic relationships with tree canopy cover 
The dependent variable, tree canopy cover on residential lands as a 

percentage of all residential land area per barrio, was log-transformed to 
aid in interpretation and because it was right-skewed. A multivariate, 
ordinary least squares (OLS) model was then fit with population density, 
the percentage of detached housing, socioeconomic status, percentage of 
owner-occupied housing, and the average age of the household head as 
independent variables. We excluded six barrios that were predominantly 
(>99 % of the land area) non-residential and support very little or no 
population, including Centro Olímpico, Jardín Botánico, Jardín Zoo
lógico, San Diego, Centro de los Héroes, and Paseo de los Indios. The 
final number of barrios for statistical analysis was therefore 64 (out of 
70). 

In order to check that model assumptions were met, regression re
siduals were tested for spatial autocorrelation using Global Moran’s I. As 
in previous studies, we used a first-order queen contiguity matrix to 
define neighbors (i.e., barrios sharing an edge or vertex were considered 
neighbors; Pham et al., 2012a; Grove et al., 2014; Locke et al., 2016; 
Martinuzzi et al., 2018). The Global Moran’s I for regression residuals 
had a small absolute value (Moran’s I = -0.109) that was statistically 
insignificant (p-value = 0.47), indicating that the OLS model did not 
suffer from spatial autocorrelation in the residuals (Fig. S1). Further, the 
Lagrange multiplier tests (n = 5) for spatial dependence were also 
non-significant (p-values between 0.059 and 0.94), further confirming 
the lack of spatial autocorrelation in the residuals. Even though some of 
the independent variables were correlated (Table S1), variance inflation 
factors for the baseline OLS model were low (<6); ten is generally 
considered an upper threshold (O’Brien, 2007). Finally, a visual exam
ination of the residuals confirmed the normality and homoskedasticity 
assumptions were met. 

We defined relationships with tree canopy cover as statistically sig
nificant if the p-value was <0.01. However, because our sample size is 
relatively small (n = 64), we also discuss the consequences of inter
preting the relationships using a less conservative p-value of <0.05, as 
many prior studies had larger sample sizes and used both thresholds (i. 
e., <0.01 and <0.05; Troy et al., 2007; Schwarz et al., 2015; Locke et al., 
2016; Gerrish and Watkins, 2018). In addition to the multivariate 

Table 1 
Socioeconomic and vegetation variables used in this study.  

Variable Name Indep. Dep. Description 

Population Density in 
Residential Lands 

X  People per km2 of residential land. 

Detached Houses X  Proportion of houses that are 
detached, in percentages. 

Socioeconomic Status X  Average socioeconomic status of 
households. Values range from 1 to 5, 
where 1 = very low, 2 = low, 3 =
medium-low, 4 = medium, and 5 =
medium-high socioeconomic status. 

Owner-Occupied 
Homes 

X  Proportion of houses that are occupied 
by owners, in percentages. 

Age of Household Head X  Average age of household head in 
years. 

Tree Canopy Cover on 
Residential Lands  

X Proportion of residential land covered 
by trees, in percentages. 

Indep. = independent, socioeconomic variables. Dep. = dependent, vegetation 
variable. 
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model, we regressed each variable separately against tree cover, and 
provide that information for comparison. All statistical analyses were 
carried out with R version 3.4.0 (2017− 04-21). 

3. Results 

3.1. Land-use/land-cover classification 

Map overall accuracy and kappa statistic were 86.9 % and 0.80 
respectively, and the users’ and producers’ accuracies ranged between 
75 % and 99 % (Table 2). The class tree had a user’s and producer’s 
accuracy of 81.8 % and 86.7 % respectively. The most expansive land 
cover in Santo Domingo was, unsurprisingly, built-up (61 %, 56.3 km2), 
followed by tree (including trees and shrubs; 27 %, 25.2 km2), and grass 
(9%, 8.5 km2; Fig. 2a). In terms of land use, about one-third (36 %) of 
Santo Domingo’s total area was residential, and two-thirds (64 %) was 
non-residential. Concomitantly, of the entire city’s tree canopy cover 
(27 %), 30 % (7.6 km2) was found in residential lands (i.e., in front yards 
and backyards) and 70 % (17.6 km2) in non-residential lands (i.e., in 
parks, protected areas, greenways, streets, commercial areas, undevel
oped private lands, etc.). Barrios in the northern part of the city, which 
are typically less urbanized than barrios in the southern portion, contain 
large areas (km2) of non-residential forest cover (Fig. 2a,b). 

The average tree canopy cover on residential lands, as a percentage 
of all residential land area per barrio, was 21 %. However, there was 
substantial variation depending on the barrio. In general, residential 
lands with the highest percentages of tree canopy cover (25 %–49 %) 
were located in the northern part of the city, followed by the west (17 
%–24 %), and then by the east (7%–16 %; Fig. 2c). 

3.2. Socioeconomic relationships with tree canopy cover 

The OLS model fit with the five socioeconomic variables explained 
(adjR2) 68 % of the variation in tree canopy cover on residential lands 
(Table 3). Three variables were statistically significant at a p-value 
<0.01: population density (negatively associated), owner-occupied 
homes (positively associated), and average age of household head 
(negatively associated). Socioeconomic status was not statistically sig
nificant at p-value <0.01. 

Interpreting of the relationships of the multivariate OLS model using 
a less conservative p-value (i.e., <0.05) changed the results for socio
economic status, but did not the other variables. Using this lower 
threshold, socioeconomic status had a negative and statistically signif
icant relationship with tree canopy cover (coefficient = -0.24; p-value =
0.025; Table 3). 

In addition, we regressed each variable separately against tree cover 
(Table S2). Two variables were statistically significant at a p-value 
<0.01 in these single-predictor analyses, which included: population 
density (negatively associated), and owner-occupied homes (positively 
associated). These two variables also appeared as important in the 
multivariate model. 

4. Discussion 

The purpose of this study was to derive high-resolution land-use/ 

land-cover data and assess social-ecological relationships in a relatively 
data-sparse and understudied urban area, i.e., the Caribbean moist 
tropical city of Santo Domingo. The analyses were motivated, in part, to 
understand if the often-studied correlates of urban tree canopy cover in 
high-income countries were also associated with tree canopy cover in a 
different climate and cultural context. Overall, we fail to reject hy
potheses 1 and 4: tree canopy cover was negatively associated with 
population density and positively associated with owner-occupied 
housing. But we reject hypotheses 2, 3, and 5: detached housing, so
cioeconomic status, and age of household were not positively associated 
with tree canopy cover. 

In relation to the remote sensing goal, we found that the combination 
of 1.2 m resolution WorldView-3 satellite imagery and object-based 
classification separated tree, grass, and other features with relatively 
high accuracy. The map kappa statistic was 0.80, which is considered 
substantial agreement, and the general, user’s and producer’s accuracies 
for the different classes were typically above 80 %, which is the standard 
for vegetation mapping by Federal Agencies like the US National Park 
Service (Environmental Systems Research Institute et al., 1994). The 
only exception was the producer’s accuracy for the class grass (75.3 %) 
but this approximated 80 %. Remaining misclassification errors in our 
map were mostly due to the confusion between trees and grass. 
Multi-temporal imagery from wet and dry months may be able to refine 
the separation between the two classes further (Brown de Colstoun et al., 
2003; Helmer et al., 2008; Gómez et al., 2016). Overall, our study re
inforces the value of high-spatial resolution imagery coupled with 
object-based classification and auxiliary GIS data to characterize urban 
land-cover and land-use in the moist tropics. 

On the social-ecological relationships, we did not find socioeconomic 
status, one of the better-studied correlates of urban tree canopy cover in 
North America (see meta-analysis by Gerrish and Watkins, 2018) to be 
positively related to residential tree canopy cover in Santo Domingo. 
Instead, we found a null or even negative relationship, depending on the 
p-value threshold used to interpret the model. Our results contradict not 
only the notion stemming from studies of North American cities, which 
typically result in positive relationships with income, but also recent 
consensus for Latin America by Dobbs et al. (2019). The study by Dobbs 
et al. (2019) reviewed the literature on urban ecosystem services for 
Latin American countries and concluded that high-income neighbor
hoods typically have greater quantity and better quality of vegetation 
than those of low-income (e.g., Pedlowski et al., 2002; Reyes Päcke and 
Figueroa Aldunce, 2010; Wright Wendel et al., 2012; de la Barrera et al., 
2016). Different factors could explain the lack of a positive relationship 
with socioeconomic status found in our study. For instance, Santo 
Domingo is undergoing a rapid infrastructure transformation in which 
old houses are being replaced by multi-story apartment buildings, which 
typically leave little or no open and green space. This phenomenon may 
explain the presence of higher income neighborhoods with lower than 
expected tree canopy cover. At the same time, it is possible that natural 
vegetation is more common in certain lower-income areas, whereas 
intentionally planted tree canopy is present in higher-income areas. 
High tree canopy cover may be possible in moist tropical climates such 
as Santo Domingo, where productivity is high and vegetation can thrive 
year-round without human intervention. Conversely, the studies from 
Latin America cited in Dobbs et al. (2019) come mostly from colder 

Table 2 
Accuracy statistics of the land cover classes.    

Reference Data  
User’s Accuracy (%) Producer’s Accuracy (%)   

Grass Built-up Tree Total 

Classified Data 
Grass 113 8 29 150 83.7 75.3 
Built-up 2 148 0 150 94.9 98.7 
Tree 20 0 130 150 81.8 86.7  
Total 135 156 159 450   

Overall accuracy: 86.9 %. Cohen’s Kappa: 0.80. 
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and/or drier climates that are less conducive to lush vegetation (e.g., 
Reyes Päcke and Figueroa Aldunce, 2010; Wright Wendel et al., 2012, de 
la Barrera et al., 2016, but see Pedlowski et al., 2002). In this sense, our 
results are consistent recent studies from San Juan, Puerto Rico, with a 
similar climate (Meléndez-Ackerman et al., 2014; Martinuzzi et al., 
2018), suggesting a potential role of the moist tropical climate in 
shaping urban vegetation. 

Overall, a combination of population density, owner-occupied 
homes, and average age of householder explained the distribution of 
tree canopy cover on residential lands in Santo Domingo. The negative 
association with age of household head was particularly surprising, as it 
contradicts not only the general expectation but also the findings from 
San Juan, Puerto Rico. A field-based study of household yards in San 
Juan found positive associations between the amount of trees in yards 

Fig. 2. Land-use/land-cover map (a); proportion of residential lands (b); and percent tree canopy cover on residential lands (c).  
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and householder age (Meléndez-Ackerman et al., 2014). However, yard 
planting was not influenced by household age, and older residents were 
less likely to make yard improvements, which suggest that other factors, 
such as reduced maintenance or abandonment, may play a role in the 
relationship between age and vegetation (Meléndez-Ackerman et al., 
2016). The relationship between age and tree canopy may be non-linear, 
and age may be an insufficient proxy for time. It is also possible that 
more theorization is needed to better link householder age and tree 
canopy cover. Additionally, our null relationship with detached houses 
contradicts previous studies that typically found a positive association 
between detached houses and tree canopy cover summarized to the 
Census block group scale (Troy et al., 2007; Grove et al., 2014). Our 
study was conducted at the barrio level, which is similar to US Census 
block groups, and it could therefore be important to corroborate for 
future research to examine if these relationships hold also at the parcel 
scale. More research is needed to better link the social and ecological 
drivers of urban vegetation, especially in tropical Latin America and the 
Caribbean. 

Our study provides also timely information for urban planning. The 
government of Santo Domingo is developing a land-use plan that fo
cuses, for the provision of ecosystem services, in the value of trees in 
public lands (i.e., in parks, streets, protected areas, etc.). While we agree 
with the value of public lands, our study revealed that about a third (30 
%) of the city’s tree canopy cover is located on residential lands, indi
cating that trees on private landholdings likely play an important role in 
the provision of ecosystem services in Santo Domingo. Thus, land-use 
planning efforts aimed at maximizing the provision of ecosystem ser
vices should try to preserve, or at least not ignore, the green areas on 
private lands. In addition, our map revealed that residential lands in the 
eastern part of the city, in particular, have very little tree canopy cover 
and should be given special attention by planners. Expanding the 
vegetation there may require connecting the interests of residents in this 
area with relevant messages and messengers to promote adoption of tree 
planting behaviors (Locke and Grove, 2016). However, the important 
presence of renter-occupied homes in that area, as reflected by the 
Census data, indicates that efforts aimed at expanding the vegetation 
should consider both homeowners and renters in order to be effective. 

As are any modeling efforts, ours is subject to limitations. For 
example, Census data at the barrio level are useful for communicating 
our results to local institutions, but can reduce potentially important 
internal heterogeneity, such as variations in socioeconomic status 
within barrios at the household level. At the same time, we tested var
iables that are important in high-income countries, but it is possible that 
other variables not included here, such as building age, yard size, and 
architectural style, among others, might be playing a role too (Troy 
et al., 2007; Meléndez-Ackerman et al., 2014; Ossola et al., 2019). These 
data were not available for this study area. Finally, differences in sta
tistical method, scales, and covariates could also be explaining some of 
the differences with the previous studies in both Latin America and 
North America. The findings from this study should be interpreted at the 
barrio level until further evaluations, e.g., at the household level, are 

carried out. 
In conclusion, our study in the moist tropical city of Santo Domingo 

shows that socioeconomic variables that are important for explaining 
urban vegetation patterns in high-income countries are not necessarily 
important in the moist tropics, reinforcing the findings from recent 
tropical studies (Meléndez-Ackerman et al., 2014; Martinuzzi et al., 
2018). For local planners, we provide new land-use/land-cover data, 
and call for the inclusion of residential lands in current city planning 
efforts as residential lands contain a substantial amount of the city’s tree 
canopy cover. Finally, our study reinforces the value of high-spatial 
resolution satellite data for studying urban areas, and highlights the 
need for further understanding the factors affecting the distribution of 
the controls of tree canopy cover outside North America. 
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Table 3 
Socioeconomic relationships with tree canopy cover assessed with OLS model.   

log(% Tree Canopy Cover on Residential Lands) 

Predictors Coefficients (in original units) CI P 

(Intercept) 5.55 4.19 to 6.91 <0.001 
Population Density in Residential Lands − 0.00 − 0.00 to -0.00 <0.001 
Detached Houses − 0.00 − 0.01 to 0.00 0.400 
Socioeconomic Status − 0.24 − 0.45 to -0.04 0.025 
Owner-Occupied Homes 0.02 0.01 to 0.02 <0.001 
Age of Household Head − 0.04 − 0.06 to -0.02 0.001 
Observations 64 
R2 / adjusted R2 0.708 / 0.683 
AIC − 0.607 

F-statistic: 28.17 on 5 and 58 DF, p-value: 2.306e-14. 
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Martinuzzi, S., Ramos-González, O.M., Muñoz-Erickson, T.A., Locke, D.H., Lugo, A.E., 
Radeloff, V.C., 2018. Vegetation cover in relation to socioeconomic factors in a 
tropical city assessed from sub-meter resolution imagery. Ecol. Appl. 28, 681–693. 
https://doi.org/10.1002/eap.1673. 

McHale, M.R., Bunn, D.N., Pickett, S.T., Twine, W., 2013. Urban ecology in a developing 
world: why advanced socioecological theory needs Africa. Front. Ecol. Environ. 11, 
556–564. https://doi.org/10.1890/120157. 

Meléndez-Ackerman, E.J., Santiago-Bartolomei, R., Vila-Ruiz, C.P., Santiago, L.E., 
García-Montiel, D., Verdejo-Ortiz, J.C., Manrique-Hernández, H., Hernández- 
Calo, E., 2014. Socioeconomic drivers of yard sustainable practices in a tropical city. 
Ecol. Soc. 19, 20. https://doi.org/10.5751/ES-06563-190320. 

Meléndez-Ackerman, E.J., Nytch, C., Santiago-Acevedo, L.E., Verdejo-Ortiz, J.C., 
Santiago-Bartolomei, R., Ramos-Santiago, L.E., Muñoz-Erickson, T.A., 2016. 
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